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ABSTRACT 

Fractional calculus and its applications are interesting problems that attract researchers from many 

different fields. In the control field, fractional orders of integral and derivative terms are applied in the 

classical PID controller and extended to a general PID controller, with the order of the derivative and 

integral terms being real numbers. Many studies have proposed this fractional-order controller, mainly for 

single-input, single-output systems. Meanwhile, industrial processes are mostly complicated multivariable 

systems because of the mutual effects of the process variables. As a result of that, controlling these 

systems is a challenge because it is difficult to manipulate each control loop independently. Various 

control structures and methods have been proposed, but this is still an open problem that needs to be 

researched intensively. In this thesis, the author proposes different solutions to solve the problem of 

multivariable systems using fractional-order controllers. The contributions of the thesis are summarized 

as follows: 

  - Propose a new control structure for multivariable processes that combines the simplified decoupling 

technique and the Smith predictor to deal with delay times in real systems. Although the controller 

structure is relatively complicated, the system’s performance is superior to other methods. 

  - The simplified decoupling technique of previous research is adopted in this thesis. However, the 

burden of calculation when deriving each transfer function is still a problem that needs to be solved, 

especially in the case of a higher order of multivariable processes. Therefore, the author proposed to use 

particle swarm optimization (PSO) to reduce and simplify the transfer functions of decoupling and 

decoupled matrices. Using the heuristic method will simplify calculations as well as increase accuracy in 

the case of higher-order multivariable processes. 

 - Research fractional calculus and its application in process control, especially the fractional-order 

PID controller (FOPID). Propose fractional-order controllers and their tuning rules for multivariable 

controllers. In general, the author proposes two methods: for a 2×2 process using internal model control 

and for 3×3 and 4×4 processes using multiple objective particle swarm optimization (MOPSO) with an 

objective function that meets the criteria of system performance and robustness simultaneously. The 

proposed methods are justified through simulation studies and also compared with other well-known 

methods using benchmark models in process control. 

 - Robust stability is an important criterion to prove whether the designed system can be applied in 

practice. In the thesis, the author uses the M-Δ structure and multiplicative output uncertainty to analyze 

and evaluate the robustness of the proposed controllers. The simulation results prove the robust stability 

of the proposed methods in comparison with other methods. 

 - In addition, the applicability of the proposed controller and fractional-order controllers is clarified 

by experiments using the quadruple tank. The least squares method for identification of single-input, 

single-output systems is extended to multivariate systems to derive the mathematical model of the tank 

system, from which the proposed methods are applied to tune the control parameters of the proposed 

controller. The obtained controllers are adopted to control the system using the Real-Time Window 

Target of Matlab. The experimental results show that fractional-order controllers can be deployed in 

practical applications. 
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TÓM TẮT 

Tính toán phân số (fractional calculus) và các ứng dụng của nó là vấn đề mới thu hút nhiều nhà 

nghiên cứu từ nhiều lĩnh vực khác nhau. Trong lĩnh vực điều khiển, tích phân và đạo hàm bậc phân số 

được ứng dụng trong bộ điều khiển PID cổ điển và mở rộng nó thành bộ điều khiển PID tổng quát với bậc 

của đạo hàm và tích phân là số thực. Nhiều công trình nghiên cứu đã đề xuất bộ điều khiển bậc phân số 

này nhưng chủ yếu cho hệ đơn biến. Trong khi đó, các quá trình công nghiệp hầu hết là hệ đa biến phức 

tạp vì sự ảnh hưởng lẫn nhau giữa các biến có trong hệ thống. Do đó, điều khiển những hệ thống này là 

bài toán phức tạp vì khó có thể hiệu chỉnh từng vòng điều khiển độc lập. Nhiều cấu trúc cũng như các 

phương pháp điều khiển khác nhau đã được đề xuất, nhưng đây vẫn là bài toán mở cần tập trung nghiên 

cứu. Trong luận án này tác giả đề xuất các giải pháp khác nhau để giải quyết bài toán hệ đa biến sử dụng 

bộ điều khiển bậc phân số. Các đóng góp của luận án được tóm tắt như sau: 

 - Đề xuất cấu trúc điều khiển mới cho hệ đa biến trong đó kết hợp cả kỹ thuật phân ly đơn giản hóa 

cho hệ đa biến và bộ dự báo Smith nhằm đối phó với các khâu trễ hiện hữu trong các hệ thống thật. Mặc 

dù cấu trúc bộ điều khiển tương đối phức tạp, nhưng hiệu quả mang lại tốt hơn hẳn khi so sánh với các 

phương pháp khác. 

 - Kỹ thuật phân ly đơn giản hóa của các nghiên cứu trước được sử dụng trong luận án. Tuy nhiên, 

việc tính toán và rút gọn các hàm truyền thành phần vẫn là vấn đề cần giải quyết, đặc biệt khi bậc của hệ 

đa biến tăng cao. Do đo, tác giả đề xuất sử dụng giải thuật tối ưu hóa bày đàn (PSO) trong việc rút gọn và 

đơn giản hóa các hàm truyền thành phần của ma trận phân ly cũng như ma trận sau khi phân ly. Sử dụng 

thuật toán tiến hóa sẽ đơn giản hóa việc tính toán và tăng độ chính xác khi bậc của hệ đa biến tăng cao.  

 - Nghiên cứu tính toán phân số (fractional calculus) và ứng dụng trong lĩnh vực điều khiển, đặc biệt là 

bộ điều khiển PID bậc phân số. Đề xuất bộ điều khiển phân số và các phương pháp hiệu chỉnh thông số 

cho các bộ điều khiển đa biến. Cụ thể, tác giả đề xuất 2 phương pháp hiệu chỉnh: cho hệ bậc thấp (2×2) sử 

dụng cấu trúc mô hình nội và cho hệ bậc cao (3×3, và 4×4) sử dụng tối ưu hóa bày đàn đa mục tiêu 

(MOPSO) với hàm mục tiêu đảm bảo tiêu chí đáp ứng đồng thời bộ điều khiển phải có sự ổn định bền 

vững. Các phương pháp đề xuất đều được kiểm chứng thông qua việc mô phỏng và so sánh với các 

phương pháp khác đã được công bố sử dụng các mô hình chuẩn thường được nghiên cứu trong lĩnh vực 

điều khiển quá trình. 

 - Sự ổn định bền vững là một tiêu chí quan trọng minh chứng cho việc hệ thống thiết kế có thể ứng 

dụng trong thực tế hay không. Trong luận án, tác giả sử dụng cấu trúc M-Δ và sai số nhân đầu ra 

(multiplicative output uncertainty) để phân tích, đánh giá ổn định bền vững cho các bộ điều khiển đề xuất. 

Kết quả mô phỏng đều minh chứng được sự ổn định bền vững khi so sánh với các nghiên cứu khác. 

 - Bên cạnh đó, khả năng ứng dụng thực tế của bộ điều khiển đề xuất cũng như điều khiển bậc phân số 

cũng được làm rõ bằng thực nghiệm sử dụng hệ bốn bồn nước liên kết (quadruple tank). Phương pháp 

bình phương tối thiểu trong nhận dạng hệ đơn biến được mở rộng sang nhận dạng hệ đa biến và ứng dụng 

để nhận dạng và mô hình hóa hệ bồn nước, từ đó áp dụng các phương pháp đề xuất để tìm thông số bộ 

điều khiển tương ứng. Bộ điều khiển tìm được được áp dụng điều khiển trực tiếp hệ thống thật ở chế độ 

thời gian thực của Matlab (Real Time Window Target). Kết quả thực nghiệm chứng tỏ phương pháp điều 

khiển bậc phân số có thể áp dụng vào điều khiển vào các ứng dụng trong thực tế. 
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INTRODUCTION 

1. Problem statement 

The centralized control method with multi-loop PI/PID controllers is often used for multivariable processes with low 

interaction (interaction between process variables is negligible) because of its simple structure, efficiency, and appropriate 

performance. However, these controllers often perform poorly when interaction increases significantly. In that case, some 

advanced control algorithms are used, such as model predictive control (MPC), fuzzy control, neural networks, etc. 

However, they face many difficulties in real-time implementation. 

Therefore, decentralized control with decoupling techniques attracts many researchers. The decoupling technique is 

used to minimize interactions between variables in the system, and as a result, simple independent control loops can be 

designed. That means, from a multivariable system with many inputs and outputs, we convert it into many single-variable 

systems. In addition, time delay is also an existing feature in process control systems. The delay time will cause difficulties 

in analyzing the characteristics and designing a controller for the system, especially in multivariable systems with different 

delay times, as well as adversely affect the response in most cases. This thesis will also set a new approach when designing 

PID controllers, which is fractional-order control based on the mathematical foundation of fractional calculus. 

Another important aspect when designing a controller in an application is system modeling. In this study, the author 

will also extend an identification technique for single-variable systems to use for multivariable processes. 

2. Research goals 

Based on the issues mentioned above, in this thesis, the author will focus on researching the following contents: 

- Proposing a solution to improve the calculation method of the simplified decoupling technique. 

- Proposing a new control structure for multivariable systems to improve the response of the system not only when 

the set-point changes but also when affected by process disturbances. In addition, it is also possible to eliminate the 

influence of delay times on the process. Evaluate the robust stability of the proposed control structure. 

- Research on fractional-order PID controllers is based on the mathematical foundation of fractional calculus. 

Proposing a new method to design a fractional-order PID controller for multivariable systems.  

- Build an experimental model to verify the proposed method. Propose a method to identify parameters of 

multivariable systems to obtain mathematical equations of the experimental model for the design and evaluation of 

the proposed methods. 

3. Research scopes 

- In this thesis, the author limits the study to square multivariable systems represented by a n×n matrix. 

- Regarding theoretical research on multivariable systems, the author will generalize to n-order systems. However, 

in the simulation study, the author only mentions 2×2, 3×3, and 4×4 systems, which are common systems in the 

field of process control. In the experiment, due to equipment limitations, the author only tests on the 2×2 system. 

4. Research approach and methods 

To ensure the novelty of the research, the author will review recent related works from prestigious international 

journals in the field of research. The proposed method will also be simulated and compared with other outstanding methods 

from works in prestigious journals. In addition, an experimental model will also be built to demonstrate the practical 

applicability of the proposed methods. 

5. Scientific and practical contributions 

The achieved results are summarized into the following main contents: 

▪ Scientific contributions: 
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- Analyzing the necessity of fractional order in describing the dynamics of systems. From there, the necessity of 

fractional calculus in the control field is also explained. Research the effects of fractional-order derivatives and integrals 

on control signals in classical feedback controllers. The simulation results show that the fractional-order controller makes 

the control signal flexible, less affected by disturbances, and also makes the entire control system more robust. 

 - Using the simplified decoupling technique proposed by Vu and Lee, the author has successfully proposed the use of 

the PSO algorithm to simplify the component transfer functions of the decoupling and decoupled matrix. This is to simplify 

calculations when the order of the system increases. The achieved results demonstrate that the proposed method gives 

better approximations than the ones in previous publications. 

 - Proposing a new control structure for multivariable systems that combines the simplified decoupling technique and 

the Smith predictor. Although the controller structure is relatively complicated, the performance is better when compared 

with other methods. 

 - Research fractional calculus and applications in the field of control, especially the fractional-order PID controller 

(FOPID). Proposing fractional controllers and parameter tuning methods for multivariable controllers. The author proposes 

two specific methods: 

✓ For 2×2 multivariable systems, use the internal model control (IMC) with the proposed fractional controller. 

To find the parameters of the controller, the author tunes via the desired response time constant to compromise 

between the system response to the servomechanism problem (set-point changes) and the regulator problem 

(disturbance changes). 

✓ With higher-order multivariable systems (3×3 and 4×4), use multi-objective swarm optimization (MOPSO) 

to find control parameters with the objective function that minimizes the error when both the set-point and 

disturbance change. The feasible solutions of the optimization problem will converge on the Pareto front, and 

from there, the appropriate solutions (control parameters) will be selected through the value of the maximum 

sensitivity function Ms to ensure the robust stability of the control systems. 

 - The proposed methods are verified through comparison with other published methods using benchmark models 

commonly researched in the field of process control. 

▪ Practical contributions: 

- The design methods proposed in the thesis are model-based design methods, so finding the mathematical model of 

the process is essential. However, in reality, there is always a mismatch between the obtained model and the actual model 

of the system, leading to the design method not being applicable in practice. Therefore, robust stability is an important 

criterion that demonstrates the applicability of the control system. In the thesis, the author uses the M-Δ structure and 

multiplicative output uncertainty to analyze and evaluate the robustness of the proposed control methods. Simulation 

results demonstrate the robust stability of the proposed methods, meaning they have high applicability. 

 - Research on identification methods for multivariable systems by using the matrix fraction description (MFD) 

technique to convert MIMO systems into multiple-input, single-output (MISO) systems. From there, we can apply the 

common identification technique for single-variable systems (the least squares method) to identify multivariable systems. 

Applying the proposed method to identify the model of the quadruple tank. 

 - The design method for the fractional-order controller is experimentally verified for the quadruple tank with a 2×2 

transfer function matrix. The control results clearly demonstrate the practical applicability of fractional-order control as 

well as the proposed design method. In the world, the field of multivariable system control is widely applied in distillation 

column systems and production processes, bringing great economic benefits. The proposed method has also demonstrated 

high applicability, so if implemented in practice, it will have great practical significance. 

6. Thesis structure: The thesis is presented in 6 chapters, including figures, tables and appendices.  
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Chapter 1. OVERVIEW 

1.1. Introduction 

 Fractional calculus has been around for a long time. However, the application of fractional computation in control has 

only developed in the last two decades. In particular, Podlubny proposed the fractional-order PID controller as a general 

case of the classical PID controller. The controller parameters are added with two additional coefficients: orders of the 

derivative and the integral terms (fractional order). This is a new research field in control engineering with many open 

problems, and that is also the approach of the thesis, which is fractional-order control based on fractional calculus. 

1.2. Overview 

An overview of the research and development of fractional-order control is presented in detail in the thesis, from 

references [1–47]. The references [48–100] are reviews of research on methods of controlling multivariable systems as 

well as methods of designing integer or fractional-order PID controllers applied to multivariable systems. 

According to the author's review, up to the time of the study, the structure of the decoupling controller combined with 

the multivariable Smith predictor had not been studied. Therefore, in this thesis, the author proposes to use this structure to 

control multivariable systems. In addition, research on fractional-order PI/PID controllers (FOPI/FOPID) for multivariable 

systems is very limited, and if there is, most of them only deal with the 2 2 systems. Typical related works are articles 

[85, 98, 100]. The work [85] uses inverted decoupling combined with a FOPID controller designed according to the IMC 

structure. The results have only been verified for some processes proposed by the authors and lack objective comparison 

with other methods. The article [100] applies the FOPI controller to a coupled-tank system (TITO); however, the approach 

is not suitable for higher-order systems when combining feedback and feedforward control. The article [98] uses 

centralized control combined with a simplified decoupling technique for a 2×2 system. Regarding the controller, the 

authors used the search algorithm method, the dynamic bat algorithm, to design the FOPID controller. In fact, these 

evolutionary techniques should only be used for systems that can not be completely solved by conventional methods (such 

as high-order multivariable systems). Therefore, the controller structure commonly used in the thesis is called the 

simplified decoupling technique combined with the Smith predictor using a fractional order controller (F-SDSP). 

The analytical tuning rules of the proposed controllers use both the internal model control (IMC) for the lower-order 

multivariable system (2×2) and the search algorithm for the higher-order systems (3×3 and 4×4), specifically the multi-

objective optimization algorithm using swarm optimization (MOPSO). To evaluate the robust stability of the entire control 

system, the M-Δ structure commonly used for systems with integer order is also extended to be used for systems with 

fractional order. 

Chapter 2. THEORETICAL FOUNDATION 

2.1 Fractional calculus in control 

There are many different definitions of fractional integrals and derivatives. However, the most commonly used 

definition is that of Riemann-Liouville, for details we can refer to references [9–13] 

❖ Definition 2.1: definition Riemann-Liouville (R-L) of fractional integrals. 

0 1

0

1 ( )
( )

( ) ( )

t

t

f
D f t d

t

−

−
=
 −








 
                  (2.1) 

where, 0 1   and ( )x  is Gamma function, where 1

0

( ) u xx e u du



− − =             (2.2) 

❖ Definition 2.2: definition Riemann-Liouville (R-L) of fractional derivatives. 
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Definition R-L of fractional derivatives based on fractional integrals: 

(1 )

0 0( ) ( )t t

d
D f t D f t

dt

− − =  
                (2.3) 

❖ Laplace and Fourier transform 

Laplace and Fourier transforms are basic and important tools of control engineering. Details of these transformations 

can be referred to [10]. 

❖ Fractional ordinary differential equation 

Fractional ordinary differential equation (FODE) is the basis for describing the dynamics of fractional-order systems. 

The fractional difference equation is described by equation (2.4): 

1 0 0

1 0 0( ) ( ) ( ) ( ) ( )n n m

n n ma D y t a D y t a D y t b D u t b D u t−

−+ + + = + +
    

         (2.4) 

where:  0 0;n ma a b b  are constants 

     0 1 0;n n m−           are positive real numbers 

 Nếu i  và j are integer multiples of a base order, the system will be commensureate order and if there is no 

common coefficient, it is called non-commensurate order. 

❖ Fractional-order transfer function 

From (2.4) and using Laplace transform (initial conditions equal to 0), we have fractional-order transfer function: 

0

1 0

0

1 0

( )
m

n n

m

n n

b s b s
G s

a s a s a s−

−

+ +
=

+ + +

 

  
                (2.5) 

❖ Fractional-order approximation in frequency domain  

Oustaloup approximation is described by the following equation: 

 ,l h

N
k

k N k

s
s s K

s=−

+
 

+
 

 




                 (2.6) 

where,   is the non-integer degree ( R+ );  ,  l h   is the approximate frequency range; K is the adjustment 

parameter so that both sides of the above equation have a gain of 1 at the cut-off frequency, easily seen as 1 rad/sc =  ; N 

is the number of pole/zero roots (usually N is chosen from 3 to 8). Usually, l , h  are chosen as 0.001 c  and 1000 c  

respectively. The gain, zero and pole are calculated by the following formulas 

 

hK =   
( ) ( )0.5 0.5 / 2 1k N N

h
k l

l

+ + − +

 
 =  

 




 


 

( ) ( )0.5 0.5 / 2 1k N N

h
k l

l

+ + + +

 
=  

 




 


 

 
Figure 2.1 Bode plot of Oustaloup approximation 

Figure 2.1 illustrates the Bode plot 

of 
0.5s  in the frequency range 

3 410 ,  10−    (rad/s) using 

Oustaloup's approximation method. 

The number of pole/zero is chosen 

in two cases N = 4 and N = 8. To 

increase calculation speed, in this 

thesis, the author choses N = 5. 

2.2 Fractional-order PID controller 

Fractional-order PID controller, PI D  , proposed by Podlubny [15]. Its transfer function has the following form: 

( ) ( , 0)      I
c P D

K
G s K K s

s




 = + +            (2.7) 

where: Kp, KI, KD are coefficients of proportional, integral and derivative respectively; ,     are the fractional orders 

of integral and derivative term respectively. It is obvious that if 1, 1= =    it becomes the classical PID controller. 
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2.3 Decoupling techniques using for multivariable systems 

2.3.1 Introduction to decoupling techniques 

Consider the decoupling control system shown in Figure 2.2, where cG  is the closed-loop controller, D is the 

decoupling matrix. G and Q are the multivariable process and the decoupled multivariable process, respectively. 

1r

2r

nr

1( )cg s

2 ( )cg s

( )cng s

( )sD ( )sG

( )sQ
c ( )sG

1y

2y

ny

1u

2u

nu

1c

2c

nc

 

The objective of a decoupling technique is to determine the 

decoupling matrix D, such that G(s)D(s) = Q(s), is a 

diagonal matrix. 

11 1 11 1 11

1 1

0

d 0

n n

n nn n nn nn

g g d d q

g g d q

     
     

=
     
          

  (2.8) 

There are three decoupling techniques, but in this thesis, the 

simplified decoupling technique is adopted (the rationale is 

analyzed in the thesis). In that case, the diagonal elements 

of decoupling matrix equal to unit, dii = 1, i =1÷n 

Figure 2.2 The decoupling control structure  

2.3.2 The simplified decoupling method 

In general, elements ( , )i j  of decoupling matrix D(s) can be determined as follows: 

, , 1,2, , ;
ij

ji ii

ii

c
d d i j n i j

c
= =        (2.9) 

The diagonal elements of decoupled matrix can be calculated as follows: 

 ii
ii ii

ii

g
q d=


 (2.10) 

where, C = (adjG)T and ( )1 G G
G

T
ii

ii ii
ii

c
g−  =  =

  
 where   is element product. 

2.4 Smith predictor for multivariable systems 

 

( )G s
( )U s ( )Y s

( )cG s
( )R s

ˆ ( )G s

0
ˆ ( )G s

( )sD

 

Figure 2.3 describes the controller structure using Smith predictor 

for multivariable systems. Then, the closed-loop transfer function 

matrix between output Y(s) and input R(s) is as follows:  
1

1

0 0 0
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )c cs s s s s s s

−
−  = +

 
H G G G G I G G  

1

0 0
ˆ ˆ( ) ( ) ( ) ( )s s s s− =H G G H           (2.11) 

where, 
1

0 0 0
ˆ ˆ( ) ( ) ( ) ( ) ( )c cs s s s s

−

 = +
 

H G G I G G       (2.12) 

Figure 2.3. Multivariable Smith predictor structure 0 ( )sH is closed-loop transfer function with non-delay process 
0 ( )sG  

2.5 Identification for multivariable systems 

Overviews of research on system identifications are presented in the thesis, from references [116 - 138]. In this thesis, 

the author uses well-known identification techniques for single-variable systems, the least squares (LS) method, and 

extends it to apply to multivariable systems. 

2.5.1. Least squares method for single variable systems 

The block diagram of the discrete single variable linear system is shown in Figure 3.1, where z is the discrete operator; 

  is the delay time. The linear differential equation of a discrete, linear and invariant system has the following form: 
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1 1 1 1( ) ( ) ( ) ( ) ( ) ( )
a a b bk k n k n k n k n ky t a y t a y t b u t b u t v t− − − −+ + + = + + +        (2.13) 

v

u
uy

1( )G z z − −

y

 

Figure 3.1. Block diagram of discrete linear systems 

Equation (2.13) can be expressed in vector form according to the linearity of the model parameters: 

( ) ( ) ( )T

k k ky t t v t= +                                                                                        (2.14) 

where:  1 1( ) ( ) ( ) ( ) ( )
a b

T

k k k n k k nt y t y t u t u t− − − −
 = − −   : regressor vector 

1 1a b

T

n na a b b =    : vector of system parameters 

Using well-know least squares method, we obtain the solution of Eq. (2.14): 
1

1 1

1 1ˆ ( ) ( ) ( ) ( )
N N

T

LS k k k k

k k

t t t y t
N N

−

= =

 
=  
 
                  (2.15) 

2.5.2 Matrix fraction description for multivariable systems 

For identification purpose, another form of MIMO normally uses as follows: 

1 0 1( ) ( 1) ( ) ( ) ( 1) ( )k ky t y t y t k u t u t u t k+ − + + − = + − + + −A A B B B        (2.16) 

where: 1 0 1( ), , ( ), ( ), ( ), , ( )n nn n n n m n m n m n    A  A  B  B  B : are constant matrix 

Representing a transfer function matrix by two polynomial matrices is called matrix fraction description (MFD). To 

ensure uniqueness of the identified model, the simplest form of MFD is used, which is the diagonal form. 

11

22

( ) 0 0

0 ( )
( )

0

0 ( )nn

A q

A q
q

A q

 
 
 =
 
 
 

A , 

11 12 1

21 22 2

1 2

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

m

m

n n nm

B q B q B q

B q B q B q
q

B q B q B q

 
 
 =
 
 
 

B       (2.17) 

where 11( ), , ( ) nnA q A q  are polynomials with a coefficient of highest order equals to 1, and the orders of polynomial 

1( ), ( )i imB q B q  are less than or equal to the order of ( )iiA q .  

This method is simple and a MIMO system becomes MISO systems. Thereofore, the complex of multivariable systems 

especially high-order system, will be minimized.  

Chapter 3. SYSTEM PERFOMANCES AND ROBUST STABILITY 

3.1 Performance criteria 

Consider the classical feedback systems shown in Figure 3.1. To evaluate the performance of the proposed method, in this 

thesis, the following performance indices will be considered.  

cG G

d

yer u

 
Figure 3.1. The classical control structure. 

3.1.1. IAE index (Integral Absolute Error) 

    IAE 
0

1

( )
NT

k

k

e t dt e
=

=       (3.1) 

where, T is a specific time and is chosen as the simulation time. From IAE 

index, we also have other indices: 

  - Jr: is IAE index when the set-point (r) is changed. 

  - Jd: is IAE index when disturbance (d) is inserted to the control loop. 

3.1.2. ITAE index (Integral of Time-weighted Absolute Error) 
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    ITAE 
0

1

( )
NT

k k

k

t e t dt t e
=

=                (3.2) 

3.1.3. TV index (Total Variation) 

To evaluate the amplitude as well as the amount of change of the control signal, TV index is often used:  

    
1

TV ( 1) ( )
N

k

u k u k
=

= + −                 (3.3) 

3.1.4. Maximum sensitivity function 

Im

Re-1

( )L j

1

sM −

 

Figure 3.2. Geometry illustration of sensitivity function 

From figure 3.1, the open loop transfer function is cL GG= . 

In the frequency domain, ( )L j , we have a formula to 

obtain the maximum sensitivity function: 

max ( )sM S j



→

= , where ( )
1

( ) 1 ( )S j L j 
−

= +    

(3.4)(3.4) 

In figure 3.2, Ms is the inverse of the shortest distance from the 

Nyquist of ( )L j  to the critical point (-1, j0) in the complex 

plane. To guarantee the robust stability of the closed-loop 

system, the typical range of Ms is 1.2 ÷ 2 [139]. 

 

3.2 Robust stability for multivariable systems 

3.2.1. Structure for robust stability analysis 

To analyze robust stability of a control system (figure 3.3), the M-Δ structure as figure 3.4 is addressed. If the nominal 

system is stable, then M will be stable and  is uncertainties that can make the system unstable.  

M

Δ uy

oW

cG G
y

 

 

u y

M



 

Figure 3.3. Robust stability with multiplicative output uncertainty Figure 3.4: M-Δ structure for robust stability 

analysis 

3.2.2 Robust stability condition using structured singular value (SSV) 

❖ Definition (SSV): Given matrix M and  Δ idiag=   where ( ) 1 Δ . The positive semidefinite function ( ) M  is 

called SSV and its definition is as follows: 

( )
( ) ( ) 

1

min det 0,  1 m mk k


−  =   
M

I M
          (3.5) 

If no   structure exits, ( ) 0 =M  

❖ Theorem: Assume that the nominal model M and the uncertainty signal Δ  are stable. Then the structure M- Δ  in 

figure 3.4 is also stable for all Δ  with ( ) 1,  Δ    if and only if: ( )( ) 1j   M    

where,  
1−

= − o c cM(s) W GG I + GG                (3.6) 

Chapter 4. THE PROPOSED METHODS FOR MULTIVARIABLE PROCESSES 

4.1 The combination of simplified decoupling with Smith predictor 
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 The general structure of the controller is described in Figure 4.1. In which, D(s) is the decoupling matrix for the 

multivariable process G(s), Q(s) is the decoupled process matrix (Q(s) = G(s)D(s)) and Q0(s) is derived from Q(s) when all 

delay times are removed. 

( )Q s

( )
o

Q s

d

r y
( )

c
G s (s)D

(s)Q

( )G s

Simplified decoupling

Smith predictor

` 

 
Figure 4.1: The structure of simplified decoupling combined with 

multivariable Smith predictor 

1

2

( ) 0 0

0 ( ) 0
( )

0 0 ( )

c

c

c

cn

g s

g s
s

g s

 
 
 =
 
 
 

G
   (4.1) 

, 1,2, , ;
ij

ji

ii

c
d i j n i j

c
= = ,         (4.2) 

ii
ii

ii

g
q =


         (4.3) 

Where, C = (adjG)T and 1( )T

ii ii

−  =  G G   

  is the element product of matrices.  

 

 The diagonal components of the decoupling and decoupled matrix are very complex and can not be used for controller 

design. In this thesis, the author has proposed a method of using the swarm optimization algorithm (PSO) to approximate 

the above components to simple and common forms in the field of process control. 

4.2. The swarm optimization algorithm to approximate models 

4.2.1. Introduction to swarm optimization algorithm 

At each step, all individuals are updated with two best values: the individual best position (Pbest) and the group's best 

position (Gbest) up to the current step. The well-known equations used to update the position and velocity of each 

individual are as follows: 

( ) ( )1 1 2 2( 1) ( ) ( ) ( )i i Pbest i Gbest iv k v k c x x k c x x k+ = + − + −             (4.4) 

max min
max k

M

−
= −

 
  ; ( 1) ( ) ( 1)i i ix k x k v k+ = + +             (4.5) 

Where, ( )iv k  and ( )ix k  are velocity and position of the ith indivitual; k is iteration step; c1 and c2 are accerleration 

coefficients or learning coefficients; 1  and 2  are real numbers which randomly generate in range of [0–1];   is the 

inertial weight; M is maximum iteration.  

4.2.2 Proposing to use PSO to approximate models 

The integer-order and fractional-order transfer functions are suggested to approximate the complex ones: 
−+

=
+ +



 
3

1 2

( 1)
( )

( 1)( 1)

s

m

K s e
G s

s s
; ( )

−

=    
+ +



 
 

 2 1
1 2

2 1

( )             0 1 2
1

s

m

Ke
G s

s s
      (4.6) 

Where, 1  and 2  are time constants, without loss of generality, assuming 1 2 0   ; K is gain; 3 is non-negative, 

when 3 0=  the above transfer function becomes second order plus delay time (SOPDT), and 2 0=  simultaneously, the 

transfer function becomes first order plus delay time (FOPDT);   is delay time; 2 1,   are fractional order. 

For integer transfer functions, from the general transfer function (4.6), we can obtain a number of transfer functions 

such as: first order plus delay time (FOPDT), second order plus delay time (SOPDT) and second order plus delay time with 

negative zero (SOPTDNZ) as equation (4.7) 

( )
1

s

m

Ke
G s

s

−

=
+




   

1 2

( )
( 1)( 1)

s

m

Ke
G s

s s

−

=
+ +



 
 3

1 2

( 1)
( )

( 1)( 1)

s

m

K s e
G s

s s

−+
=

+ +



 
       (4.7) 

Similar to fractional-order transfer fucntions, afer approximation, we have some following forms: 
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( )
−

=  
+







( )             0 1

1

s

m

Ke
G s

s
  (4.8);  ( )

−

=    
+ +



 
 

 2 1
1 2

2 1

( )             0 1 2
1

s

m

Ke
G s

s s
  (4.9) 

The approximation algorithm is described as follows: 

The parameters  , Kmin, Kmax and max ( 1 3)i i =    are 

determined based on open loop response with step function 

input. 

 1 2 3 1 2 
T

K=x       

min max

1 1max

2 2max

3 3max

1

2

0      

  0

  0       

0 1         

1 2   

K K K 


 

  


 
  


 

 

 

 





   (4.10) 

 

ij iid q

( )mG s

y
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ŷ

u

 

Figure 4.2. The structure of the approximation algorithm 

 

The objective function:  ( )
2

1

1
ˆ

N

i

f y y
N =

= −    (4.11) 
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Initialize a set of N particle positions   
00

1 2 3 1 2x K     =
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another new position

Maximum 

iteration?

Evaluate the fitness value of each particle

End

Y

N

Y

N

- Evaluate the fitness values of the initial positions

- Set initial particles best positions (Pbest) as initial postions:
0

P xbest =

- Find the global best position from the initial positions: bestG

- Update the velocities and positions

- Update the inertial weight

Improper model of the 

new position?

- Update global best position:

- Update particles best positions: Pbest

bestG

 

Figure 4.3. The flowchart of PSO algorithm for model 

approximation 

4.3. The proposed method to design the fractional-order PI/PID controllers (FOPI/FOPID) 

In this thesis, the author proposes a novel structure of a fractional-order PID, called I PI D  
 controller. The general 

transfer function has the following form: 

1 1 1
( ) 1

1
c c D

I F

g s K s
s s s

 
= + + 

+ 



 


 
              (4.12) 

 Where, , ,c I DK      are gain, integral time, derivative time respectively; ,     are fractional order of the integral and 

derivative term respectively;   is fractional order of ideal integral term, and: 1= −  . In special case, 1= , we will have 

0= ; 
F  is time constant of the first-order lowpass filter, in case of no filter 0F = . 

4.3.1 Propose a design method based on internal model control (IMC)  

4.3.1.1. The tuning rules for some typical processes 

Table 4.1. The tuning rules of controllers for some cases 

Models The tuning rules of controllers 

( )
1

o

K
q s

s
=

+
 

(0 1  ) 

c

c

K
K

=



; I =  ; ;  1= = −   

   

0D F= = 
 

2 1
0

2 1

( )
1

K
q s

s s
=

+ +
  

 

1 2(0 1 2)      

1

2
c

c

K
K

=



; 2

1

1

;  I D= =


  
 ; 1 1;  1= = −   
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2 1= −   ; 
2

c
F =


  

4.3.1.2. Robust stability analysis for the proposed controller. 

The proposed controller (figure 4.1) is equivalently transformed to M-Δ structure as figure 4.4. 

( )sD

(s)Q

( )c sG

( )sΔ

( )sG

y u

( ) ( )o s s−Q Q

( )o sW
M

 
Figure 4.4. M-Δ structure of the proposed controller  

Matrix M is calculated as follow: 

   
1

( ) ( ) ( ) ( ) ( ) ( )o c o cs s s s s s
−

= − +M W Q G I Q G   (4.13) 

According to the theorem in section 3.2.2, the condition to 

ensure robust stability with multiplicative output uncertainty 

is as follow: 

    1( ) ( ) ( ) ( ) ( ) ( ) 1,o c o cj j j j j j
−

  =     +    M W Q G I Q G

            (4.14) 

 

4.3.2. Design PI/PID controllers for high-order multivariable processes using multi-objective optimization 

4.3.2.1. Multi-objective particle swarm optimization (MOPSO) 

MOPSO algorithm is described in form of pseudo-code as figure 4.5: 

1: A = Ø 

2: for i = 1: Nparticle 

3:  initialize xi, vi 

4:  constraint(xi) 

5:  xPbest,i = xi 

6: end 

7: A = dominance(xPbest) 

8: k = 0 

9: while k ≤ MAX 

10:  for i = 1: Nparticle 

11:   ( ) ( )1 1 2 2( 1) ( ) ( ) ( )i i Pbest i Gbest iv k v k c x x k c x x k+ = + − + −    

12:   ( 1) ( ) ( 1)i i ix k x k v k+ = + +  

13:   constraint(xi) 

14:   xi = mutate(xi) 

15:   if xi domninates xPbest,i 

16:    xPbest,i = xi 

17:   end 

18:  end 

19:   A = dominance(xPbest) 

20:  update (A) 

21:  k = k+1 

22:  end 

Figure 4.5. The pseudo code of MOPSO algorithm 

4.3.2.2. Using MOPSO to design a general-oder PI controller. 



 

11 

 

Consider a closed-loop control system as shown in Figure 4.6, where cg  is the proposed controller; q is the diagonal 

component of the decoupled matrix; r, d are the setpoint and disturbance signal respectively 

d

yr u
cg q

 

The controller in this case is derived from the proposed 

controller (4.12) without using the filter ( 0F = ), and is 

rewritten as follows: 

1
( ) I

c c

K
g s K

s s

 
= + 

 
 

     (4.15) 

Figure 4.6 The classical closed loop systems  

The controller is designed to achieve a compromise between system response and disturbance resistance, so a multi-

objective optimization algorithm is used. The design steps are as follows: 

Initialization

MOPSO

PF

1.3 1.5s

r
M

J
 

Min 

Stage 1

Stage 2N

Y

End

 

Stage 1: using MOPSO algorithm: 

Min  ( ) ( ), ( )r d=J x J x J x  (5.36) 

 where,  
T

c IK K=  x ; ,r dJ J  are IAE indices, Eq. (3.1)  

 The constraints:  

min max

max0

0.7 1

0 0.3

c c c

I I

K K K

K K

 


 


 
  





      (4.16) 

where,  0.7,  1 ,  ( )0,0.3  and min max max,  ,  c c IK K K  are chosen 

based on open loop response of the system. 

Stage 2: After obtaining the PF from stage 1, the maximum sensitivity 

function (3.4) is suggested to appropriately choose the control paramters to 

guarantee the robust stability of each control loop 

Figure 4.7 The flowchart of the proposed 

tuning steps  ,

1
max

1 ( ) ( )l h

s

c s j

M
g s q s

=
+  



        (4.17) 

4.3.2.3 Robust stability analysis of the multivariable processes. 

( )sΔ

( )sM

yu

( )sD

(s)Q

( )c sG

( )o sW ( )sΔ

( )sG

y u

 

Figure 4.8. M-Δ structure for robust stability analysis 

In figure 4.8, matrix M(s) is calculated as follow: 

 
1

( ) ( ) ( ) ( ) ( ) ( )o c cs s s s s s
−

= − +M W Q G I Q G      (4.18) 

According to the theorem in section 3.2.2, the condition to 

ensure robust stability with multiplicative output uncertainty is 

as follow: 

    1( ) ) ( ) ( ) ( ) ( ) 1,      o c cj j j j j j
−

= +  M W Q G I Q G        

       (4.19) 

Chapter 5. SIMULATION AND EXPERIMENT 

5.1 Simulation study 

 To ensure objectivity when simulating and verifying the proposed methods, and to easily compare with other famous 

methods, benchmark models commonly used in the field of process control are considered to evaluate the control responses 

as well as the robustness of the proposed methods. 

5.1.1. The proposed method for TITO processes 

5.1.1.1 Distillation column Vinante and Luyben (VL) 
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Transfer function matrix of VL column was first introduced by Luyben [143], the matrix is as follow:  
0.3

1.8 0.35

2.2 1.3

7 1 7 1
( )

2.8 4.3

9.5 1 9.2 1

s s

s s

e e

s s
s

e e

s s

− −

− −

 −
 

+ + =
 −
 

+ + 

G   

The decoupling matrix is obtained: 

1.45

1 0.591

( ) 0.651(9.2 1)
1

9.5 1

ss s e

s

−

 
 = + 
 + 

D     (5.1) 

The two diagonal components of the decoupled matrix can be calculated according to table 4.2 (in the thesis) as follows: 
0.3 1.8

12 21
11 11 0.35

22

2.2 1.3 2.8 9.2 1

7 1 7 1 9.5 1 4.3

s s s

s

g g e e e s
q g

g s s s e

− − −

−

  − + 
= − = +    

+ + +    
          (5.2) 

0.35 0.3 1.8

12 21
22 22

11

4.3 1.3 2.8 7 1

9.2 1 7 1 9.5 1 2.2

s s s

s

g g e e e s
q g

g s s s e

− − −

−

   + 
= − = −    

+ + +    
          (5.3) 

The PSO algorithm will be used to approximate two complex transfer functions 11q and 22q , the approximate results are: 

11 0.97

1.3629

6.6757 1

se
q

s

−−
=

+
;   

0.3

22 0.9683

2.6679

8.8871 1

se
q

s

−

=
+

          (5.4) 

The step response of the original transfer functions and the corresponding approximate functions are compared in figures 

5.1 and 5.2. The approximate responses are also compared with the coefficient matching (CM) method proposed by Vu and 

Lee [67]. In this case, the results are equivalent and almost equivalent to the responses of the original transfer functions 

  

Figure 5.1.Step responses of q11 and its approximation (VL) Figure 5.2.Step responses of q22 and its approximation (VL)  

 Based on Table 4.3 in the thesis, in this case, the desired response time constants for the two control loops are chosen 

1.9c =  and 1.6c = , respectively. Two FOPI controllers for two control loops have the following form: 

 
1 0.03 0.97

1 1
( ) 2.5765 1

6.6757
cg s

s s

 
= − + 

 
   

2 0.0317 0.9683

1 1
( ) 2.082 1

8.8871
cg s

s s

 
= + 

 
     (5.5) 

Simulation results of the proposed algorithm and comparison with other methods: simplified decoupling combining 

Smith predictor with integer-order controller (SDSP [144]) and centralized inverted decoupling (Garrido [68]) and are 

presented in Figure 5.3a, b. Figure 5.4 demonstrates the robust stability of the proposed controller. Table 5.1 summarizes 

performance indices.  

  

Figure 5.3a. Step responses of control loop 1 (VL) Figure 5.3b. Step responses of control loop 2 (VL) 
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Table 5.1. Performance indices of VL column  

Methods IAE ITAE TV [ ]M  

Proposed 

(F-SDSP) 
3.7490 101.66 10.838 0.2974 

SDSP 3.4382 102.83 8.7549 0.3046 

Garrido 
4.5255 126.04 11.295 0.4107 

 

Figure 5.4. SSV plots for robust stability (VL) 

5.1.1.2 Heavy oil fractionator 

 The heavy oil fractionator is a 2 2  process often used to study control algorithms of multivariable systems in the field 

of process control [70,145]. Its transfer function matrix has the following equation 

 
27 28

18 14

4.05 1.77

27 1 60 1
( )

5.39 5.72

50 1 60 1

s s

s s

e e

s s
s

e e

s s

− −

− −

 
 

+ + =
 
 

+ + 

G  

Decoupling matrix is obtained: 

4

0.437(27 1)
1

60 1
( )

0.9423(60 1)
1

50 1

s

s

s e

s
s

s e

s

−

−

 +
− 

+ =
 +
− 

+ 

D     (5.6) 

 To design a controller for each feedback loop of the system, the diagonal components of the decoupled matrix must be 

calculated. Based on the formulas in table 4.2 of the thesis, we can calculate as follows  
27 28 18

12 21
11 11 14

22

4.05 1.77 3.39 60 1

27 1 60 1 50 1 5.72

s s s

s

g g e e e s
q g

g s s s e

− − −

−

   + 
= − = −    

+ + +    
          (5.7)

 14 28 18

12 21
22 22 27

11

5.72 1.77 5.39 27 1

60 1 60 1 50 1 4.05

s s s

s

g g e e e s
q g

g s s s e

− − −

−

   + 
= − = −    

+ + +    
          (5.8) 

 Using the PSO algorithm to approximate the above two transfer functions, the results are as follows:  
27

11 1.1334

2.3979
( )

15.1333 6.9815 1

se
q s

s s

−

=
+ +

;  
14

22 0.9967

3.3877
( )

45.6092 1

se
q s

s

−

=
+

         (5.9) 

  Figures 5.5 and 5.6 illustrate the step responses of the original transfer functions compared to the approximated 

transfer functions. It can be seen that using the PSO algorithm gives quite good approximation results, for example in the 

case of the response of loop 2, the response of the original function and the approximated function almost the same. 

 In this case the desired response time constants for the two loops are chosen 14c =  and 20c = , respectively. Two 

FOPI controllers for two control loops have the following form  

0.1759

1

1 1
( ) 0.0622 1 5.7077

4.166 7 1
cg s s

s s

 
= + + 

+ 
;  

2 0.0033 0.9967

0.6732 1
( ) 1

45.6092
cg s

s s

 
= + 

 
       (5.10) 

 

  

Figure 5.5. Step responses of q11 its approximation (heavy oil) Figure 5.6.Step responses of q22 and its approximation (heavy oil) 
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  The simulation results of the proposed method are shown in Figures 5.7 a, b. Furthermore, to increase convincingness, 

the response is also compared with other methods such as: inverted decoupling combined internal model control with filter 

(IDIMC-F), and centralized inverted decoupling (ID-K) was proposed by Garrido [70] 

  

Figure 5.7 a. Step responses of control loop 1 (heavy oil) Figure 5.7 b. Step responses of control loop 2 (heavy oil) 

Parameters on performance and robustness indices are listed in table 5.2. In addition, Figure 5.8 illustrates the SSV plots to 

evaluate the robust stability of the proposed controller compared to other methods. 

 

Table 5.2. Performance indices of the heavy oil fractionator 

Methods IAE ITAE TV [ ]M  

Proposed (F-

SDSP) 
57.824 10173 1.4838 0.200 

IDIMC-F 750.00 218750 1.7289 0.7068 

ID-K 
95.521 14561 14.678 0.3880 

 

Hình 5.8. The SSV plots for robust stability 

 

5.1.2.  The proposed method for high-order multivariable processes 

5.1.2.1 Ogunnaike and Ray (OR) distillation column 

The well-known OR distillation column used to separate mixtures of ethanol and water is widely used in simulation 

studies in the field of process control [55, 67-69]. Open-loop transfer function matrix and decoupling matrix: 
2.6 3.5

6.5 3 1.2

9.2 9.4

0.66 0.61 0.0049

6.7 1 8.64 1 9.06 1

1.11 2.36 0.01
( )

3.25 1 5 1 7.09 1

34.68 46.2 0.87(11.61 1)

8.15 1 10.9 1 (3.89 1)(18.8 1)

s s s

s s s

s s s

e e e

s s s

e e e
s

s s s

e e s e

s s s s

− − −

− − −

− − −

 − −
 

+ + + 
 − −

=  
+ + + 

 − +
 

+ + + + 

G

 

 

0.9 0.5233

2.71

8.2 8.4

(0.8337 1)
1 0.7549 0.0062

0.533 1

( ) 0.3905 1 0.0014

(13.8874 1) (2.0113 1)
19.8247 23.1741 1

8.7956 1 5.5621 1

s s

s

s s

s
e e

s

s e

s s
e e

s s

− −

−

− −

+ 
 +
 

= − 
 + +
 −

+ + 

D

              (5.11) 

The diagonal components of the decoupled matrix can be calculated as follows:  
2.6

11

0.3298(23.1802 1)

(21.1355 1)(3.7363s 1)

ss e
q

s

−+
=

+ +
; 

3

22

1.2973

(1.2739 1)(0.5014 1)

se
q

s s

−−
=

+ +
; 

33

0.5601(17.4859 1)

(20 1)(2.6915 1)

ss e
q

s s

−+
=

+ +
   (5.12) 

The design sequence includes 2 steps: the first step will be to find the PF containing feasible solutions of the multi-

objective optimization problem, and then select the most appropriate solution based on performance criteria and robustness 

index Ms. Figure 5.9 a, b, and c illustrate the results of the PF achieved by each control loop, the set of feasible solutions of 

the optimization problem converges to the Pareto front. The final control parameters achieved are summarized in table 5.3. 
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Figure 5.9 a, b, and c. The obtained PFs using two objective functions rJ  and dJ  

In this example, the proposed method is compared with methods such as multi-loop PI/PID controller [55] and 

centralized PI controller (CPI) [146]. The simulation results are shown in Figures 5.10 a, b, and c. Similar to the previous 

example, the criterion   is used to evaluate the robustness of the proposed method. The weight matrix for the output 

multiplicative uncertainty of the three diagonal components of the decoupled matrix is selected as follows: 

o

0.2 0.2 0.2
( ) diag , ,

0.5 1 0.5 1 0.5 1

s s s
s

s s s

+ + + 
= − − − 

+ + + 
W  (5.13) 

 This weight matrix corresponds to approximately 20% of the error of the gain parameter. Figure 5.11 demonstrates that 

the structured singular value (SSV) of the proposed method always ensures the stability of the control system. Meanwhile, 

in other methods, the value of   has a peak exceeding 1, meaning the control system will be unstable in this case.  

Table 5.3. Control parameters and performance indices of OR column. 

Phương 

pháp 
Vòng ciK  IiK  

 

Di  

 
i  i  [ ] M  IAE TV 

 

Đề xuất 

1 1.504 0.157 __ 1 0.055 

0.1002 27.79 4.9783 2 -0.089 0.970 __ 0.832 0.174 

 3 1.377 0.107 __ 1 0.01 

Multi-loop 1 2.250 0.140 2.58 __ __ 

0.2479 39.99 6.1432 2 -0.490 0.155 3.37 __ __ 

 3 4.830 0.322 10.16 __ __ 

CPI _ 
*Gc(s) 

__ __ 

0.1276 25.73 4.9336 _ __ __ 

    

*Gc(s): full matrix (3×3), it means that we need 9 PI controllers, detail matrix can be refered in [146] 

 
Figure 5.10 a. Step responses of control loop 1 (OR) 

 
Hình 5.10 b. Step responses of control loop 2 (OR) 
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Figure 5.10 c. Step responses of control loop 3 (OR) 

 
Figure 5.11. The SSV plots for robust stability (OR) 

5.1.2.2. HVAC for temperature control (4×4) 

The temperature control model for four connected rooms is known as the HVAC process [64]. The transfer function matrix 

represents the process represented by a (4×4) matrix (5.14) 
17 27 32 30

25 16 33 34

31 34 16

0.098 0.036 0.014 0.017

122 1 149 1 158 1 155 1

0.043 0.092 0.011 0.012
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 
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 
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 (5.14) 

The decoupling matrix [67, 144]: 
9.151 11.943 8.887

8.77 12.986

0.341(121.918 1) 0.081(132.251 1) 0.115(124.604 1)
1
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 
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 (5.15)

 

Using PSO algorithm to approximate the transfer functions, the diagonal elements of decoupled matrix are as follows: 
17
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se
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s

−−
=

+
; 

16

22

0.0736

117.2055 1

se
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+
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16
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112.2966 1

se
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−−
=

+
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18

44
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121.0125 1

se
q

s

−−
=
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    (5.16) 

 In this example, the centralized PI controller (CPI) method proposed by Ghosh and Pan [146] and the optimal retuning 

method (1-ODP) proposed by Khandelwall and Detroja [147] are selected to compare with the proposed method. Similar to 

the previous example, after using the proposed method, the controller parameters are achieved as shown in table 5.4. From 

this table, we see that the integral term of the controller always has integer order in this case, meaning that the optimal 

controller for the HVAC system is the traditional PI controller.  

Table 5.4. Control parameters and performance indices of HVAC 

Methods Loop ciK  IiK  i  i  [ ]M  IAE TV 

 

Proposed 

1 -23.799 0.0094 1 __ 

0.2019 199.72 207.146 
2 -37.292 0.0091 1 __ 

 3 

4 

-28.036 

-26.882 

0.0099 

0.0085 

1 

1 

__ 

__ 

    __    
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1-ODP _ *

1 ( )c ODP s−G  _ __ 0.2287 372.03 340.492 

   __ 

 

CPI 

 
**( )c CPI s−G  

 __ 

0.1999 376.60 200.588 _ _ __ 

   __ 

*Gc-1ODP(s) và **Gc-CPI(s): are full matrix (4×4), it means that we need 16 controllers, detail matrices can be 

refered to [146] 

 In this section, the sequential change of the set-point is performed at times t = 0 (min), t = 500 (min), t = 1000 (min), 

and t = 1500 (min) respectively for control loops 1 to 4. Figure 5.12 a, b, c and d illustrates the response of the proposed 

controller and other controllers when the set-point and disturbance change. 

 

(a) 
 

(b) 

 

(c) 
 

(d) 

Figure 5.12 a, b, c and d. Step responses of 4 control loops respectively 

 
Figure 5.13 The SSV plots for robust stability of HVAC 

 

Figure 5.13 shows the plots of   all three methods 

and all ensure robust stability in the presence of 

uncertainty signals with a multiplicative output error. 

 

5.2 Experiment on fractional-order control for multivariable systems 
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 To verify the applicability of the proposed controller as well as the performance of the fractional-order controller for 

multivariable systems, in this thesis, the author experiments on a system of quadruple tank. 

5.2.1 Introduction to the experimental model 

 Figure 5.15 is the quadruple-tank system used for experiment. The flow of liquid pumped into the tanks is controlled 

by two AC centrifugal pumps with pump speed adjusted by two inverters with control voltages u1, u2 (0–10 VDC). Two 

three-way valves V1 and V2 divide the flow out of the pump into the upper and lower tanks (crossing each other as the 

figure) with two dividing factors 1 and 2  ( 1 20 , 1    ). The liquid levels in the two lower tanks are h1, h2 (m) and are 

measured by 2 capacitive sensors (LT1, LT2) with the output signal being the industrial standard current (4-20 mA) 

corresponding to the liquid level (0 – 0.6 m); Using a current-voltage converter to convert current into a voltage of 0-5 

VDC. Four tanks have rectangular cross-sections areas A1, A2, A3 and A4 (m2) respectively.  
3q 4q

3oq 4oq

2V

Inv1

1P

Inv2
2u

2P

1FT 2FT

1V

1h
2h

1LT 2LT

3h
4h

1u

1q
2q

1oq 2oq

1 2FT ,FT :Flow transmitters

1 2LT ,LT :Level transmitters

1 2P ,P : Pump

1 2V ,V : Three-way valves

Inv1, Inv2 : Inverters

 

The matrix transfer function of the system: 

( )( )

( )( )

1 1 2 2

1 3 11 1

2 23 1 4 2

2 2 4

(1 )

1 1 1( ) ( )

( ) ( )(1 )

1 1 1

K K

s s sX s R s

X s R sK K

s s s

− 
 + + +    =    −   
 

+ + +  

 

  

 

  

 

          (5.17) 

where: 1 1 1 2 2 1 2 2

1 2 3 4

1 1 2 2

;  ;  ;  
k k k k

K K K K
A A A A

   
= = = =   

          (5.18) 

 

Figure 5.14. Diagram of the quadruple tank system 
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Figure 5.15 (a) The quadruple tank system (b) Block diagram of the controller 

The quadruple tank system is a 2 2  process with input signals being two pump control voltages and two outputs 

being the liquid level in the two lower tanks. This system is chosen for many academic simulation or experiment in the 

field of process control because the dynamic characteristics of the system will change differently depending on the 

coefficient 1 2,  . Figure 5.15 (a) is the actual system including the water tanks and control cabinet. Figure 5.15 (b) is a 

diagram of the data acquisition (DAQ PCIe 6323) and other hardware devices used in the system. 

5.2.2 System identification using the proposed method 

According to the system identificaton theory presented in chapter 2, the author conducted experiments to find the 

mathematical model for the system. 
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5.2.2.1 Data acquisition 

Although the dynamic of the system is nonlinear, after approximating around the operating point, the system can be 

represented in linear form with a 2×2 transfer function matrix, equation (5.17). Therefore, in this case, we choose the input 

signal as a pseudo random binary signal (PRBS). 

  

Figure 5.16. In-out data for loop 1 identification Figure 5.17. In-out data for loop 2 identification 

5.2.2.2. Using LS method for the two-input, two-output (TITO) system 

Eq. 5.17 can be represented by a general matrix as follows: 

( )

( )

( ) ( )

( ) ( )

( )

( )

( )

( )
1 11 12 1 1

2 21 22 2 2

   
y t G q G q t v t

y t G q G q

r

t v tr

       
= +       

       

            (5.19) 

Applying the LS method mentioned in section 3.2 to each output, assuming the first output (the other is completely 

similar), we have 

( )
1

2

1 11 1 11 1 12 2

1

     
1

( ) ( ) ( ) ( ) ( ) ( )
N

LS

k n

V A q k q qy B r B rk k
N = +

 − +=                 (5.20)  

Solutions of (5.20) are obtained from Eq. (2.15), where:  

• n1, n2, n3 are orders of A11(q), B11(q), B12(q) ( 1 2 3n n n  ) 

• 

( )

( )
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1 2 3
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1 1
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1
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5.2.2.3. Validation 

Using 800 samples from collected data to validate the identified results : 

  

Figure 5.18. Validation of identified parameters of loop 1 Figure 5.19 Validation of identified parameters of loop 2 
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Paramerters θ  of both loops are obtained: 

 

1

1.4371

0.0059

0.4430

0.0000

0.0002

− 
 
−
 
 =
 
 
  

θ 2

1.4280

0.0183

0.4098

0.0002

0.0001

− 
 
 
 =
 
 
  

θ     (5.21) 

Converting to continous transfer functions with sample 

time Ts = 0.1 (s) 
3 2

11 4 3 2

0.0002395 0.008916 0.2691 2.807
( )

15.44 1053 877.5 1.777

s s s
G s

s s s s

+ + +
=

+ + + +
 (5.22) 

3 2

12 4 3 2

0.001006 0.03744 1.13 11.79
( )

15.44 1053 877.5 1.777

s s s
G s

s s s s

+ + +
=

+ + + +
  (5.23) 

3 2

21 4 3 2

0.001414 0.05352 1.618 16.96
( )

16.67 1065 1232 2.388

s s s
G s

s s s s

+ + +
=

+ + + +
  (5.24) 

3 2

22 4 3 2

0.0006391 0.02419 0.7314 7.669
( )

16.67 1065 1232 2.388

s s s
G s

s s s s

+ + +
=

+ + + +
 (5.25) 

          

From the dynamic equations of the system, it can be seen that the component transfer functions are only of order 1 or 2. 

Therefore, we use the proposed approximation technique, the above transfer functions (5.22) to (5.25) are approximated to  
6.85
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=
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se
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−

=
+

; 
6.55

22
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( )

517.9853 1

se
G s

s

−

=
+

     (5.26) 

  
Figure 5.20. Step responses of G11(s) and its approximation Figure 5.21. Step responses of G12(s) and its approximation 

  

Figure 5.22. Step responses of G21(s) and its approximation Figure 5.23. Step responses of G22(s) and its approximation 

5.2.3 Controller design 

Applying the simplified decoupling technique, we can calculate the components of the decoupling matrix as follows 

   12
12

11

4.1966(496.2227 1)

495.2328 1

G s
d

G s

+
= − = −

+
; 21

21

22
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d
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+
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+
     (5.27) 

According to table 4.2 (2×2), the diagonal components of the decoupled matrix can be calculated as follows 
5.12 5.18
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12 21
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5.12 5.18

6.55

12 21
22 22 6.85

11

6.6411 7.1072

3.2158 495.2328 1 516.9899 1( )= 
1.5825517.9853 1

496.2227 1

s s

s

s

e e

G G e s sq s G
eG s

s

− −

−

−

+ +− = −
+

+

       (5.29) 



 

21 

 

The two Eqs. (5.28) and (5.29) are quite complicated and can not be used to design the corresponding controller. 

Using the proposed method to approximate q11 and q22 to the a fractional-order transfer function, Eq. (4.9). Figures 5.24 

and 5.25 are the step response of the original functions and the approximated ones. 

 
Figure 5.24. Step responses of q11(s) and its approximation 

 
Figure 5.25. Step responses of q22(s) and its approximation 

The approximated transfer functions :  
3.7

11 1.2489

13.0755
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+ +
;  

3.45

22 1.7
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−−

+ +
      (5.30) 

From the two above transfer functions, equation (5.30), we use the proposed controllers and their design method 

proposed in chapter 4, the calculation formulas are summarized in table 4.1. The two resulting controllers: 

0.2489

1

1 1
( ) 3.3528 1 0.455

482.2408 2.5 1
cg s s

s s

 
= − + + 

+ 
; 0.7

2

1 1
( ) 2.0251 1 2.2364

540.7 2.5 1
cg s s

s s

 
= − + + 

+ 
(5.31) 

 Simulation results of the quadruple tank are shown in Figures 5.26 and 5.27. To evaluate the effectiveness of the 

proposed method (F-SDSP), the author compared it with other methods: SDSP ([144]) using integer order and inverted 

decoupling method combined with Smith predictor (SID) (Garrido [80]). The input signals are changed sequentially at the 

two inputs at times t = 0 and t = 150 (s). 

  

Figure 5.26. Step response of control loop 1 Figure 5.27. Step response of control loop 2 

Compared with the SID method, the control signals of the proposed structure (integer and non-integer order) both give 

better results with significantly smaller TV values (table 5.5). The other performance indices (IAE and ITAE) summarized 

in table 5.5 also demonstrate that the F-SDSP method gives superior results than the other. 

Figure 5.28 evaluates the robust stability of the control system. In this case, the multiplicative output uncertainty with 

the weight matrix chosen as in simulation problems 
0

0.2 0.2
( ) ,

2 1 2 1

s s
s diag

s s

 + + 
= − −  

+ +  
W . In general, in the frequency 

range (10-3 – 103) rad/s, all methods give similar robust stability. The values  in table 5.5 also prove that. 

Implementing the fractional-order controller according to equations (5.31) together with the simplified decoupler 

(5.27), using Matlab's Simulink to run in real-time mode (Real-Time Window Target). The controller diagram of the 

system is built on Simulink as shown in Figure 5.29. 
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Figure 5.28. The SSV plots for robust stability 

(quadruple tank) 

Bảng 5.5 Performance indices of the quadruple tank system 

Method IAE ITAE TV [ ]M  

F-SDSP 21.2353 1739.5 12.4502 0.2000 

SDSP 31.2305 2713.2 5.3683 0.2000 

SID 24.9496 2165.3 26.4776 0.2027 
 

 
Figure 5.29. Simulink diagram in real-time control mode  

The results of controlling the quadruple tank are shown in Figure 5.30 a and b. From the figures, we can see that the 

control responses of both tanks are similar to the simulation results (Figures 5.26 and 5.27). In tank 1, there is no overshoot 

and the settling time is about 40 (s); In tank 2, there is an overshoot but not significant and the settling time is about 60 (s). 

From the responses, we also see that the responses fluctuates slightly, mainly due to sensor noises. The experimental 

process also proves that the fractional-order controller is capable of controlling real systems. 

  

Figure 5.30 a, b. Step responses of levels in both tanks 

Figure 5.31 a, b show the control voltages of the system. It can be seen that when the liquid level reaches the desired value 

(steady state), the control signals change very little with the goal of maintaining the system's set-points. The experimental 

control signals have low frequency fluctuations due to noises in the measurement signal as well as due to fluctuations in the 

liquid level in the tank as described above. 

  

Figure 5.31 a, b. The control voltages in both tanks 
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Chapter 6. CONCLUSION 

6.1 Results 

In the thesis, the author focused on research to solve the problems of controlling multivariable processes. The research 

results are achieved by using fractional-order PID controllers as well as developing the controller structure for 

multivariable systems. The research results are summarized as follows: 

Analyzing the advantages of fractional order in describing the dynamics of some famous equations. From there, the 

necessity of fractional calculus in the control field is explained. Research the effects of derivatives and integrals of 

fractional order on control signals in the feedback controller. The simulation results show that the fractional-order 

controller makes the control signal less affected by noise and also makes the control system more robust. 

Proposing a control structure for multivariable systems combining simplified decoupling and the multivariable Smith 

predictor. The component transfer functions of the decoupling and decoupled matrix are complicated, especially when the 

degree of the multivariable system increases. In this study, to simplify the above transfer functions to make it easier to 

design the controller, the author proposes to use the particle swarm optimization (PSO) algorithm to approximate the 

transfer functions to some simple forms with integer and fractional orders, achieving high accuracy when compared with 

existing approximation and reduction methods. However, the proposed method is only suitable for linear systems with 

assumed transfer functions known in advance and can not solve the general problem of any multivariable system. In 

addition, the multivariable Smith predictor is incorporated into the simplified decoupling structure, which is intended to 

eliminate the delay times in the characteristic equation of the closed-loop system, leading to a convenient design of the 

controller. 

Based on the proposed structure, the author has also proposed methods to tune fractional-order PI/PID controllers for 

different multivariable systems. The research is summarized as follows: 

- Propose analytical tuning rules for the proposed controller using an internal model control (IMC) for low-order 

multivariable systems (2×2). The controller parameters are calculated based on the desired response time criterion. 

However, this method is not general because not all cases can reduce the IMC controller to the form of a fractional 

order PI/PID controller. For multivariable systems, this method is only suitable for 2×2 systems. 

- For high-order systems (3×3 and 4×4), the author proposes a multi-objective particle swarm optimization 

algorithm (MOPSO) to find the parameters of the controller. The objective function of the optimization problem is 

to minimize the two steady state errors when the set-point and disturbance change. The feasible solutions of the 

multi-objective optimization problem will converge to the Pareto front, and from there, the robust stability criterion 

using the maximum sensitivity function index will be suggested to select the most suitable solution from the Pareto 

front to ensure the robustness of the control system. 

The robustness of the entire control structure will be re-evaluated using the M-Δ structure and multiplicative output 

uncertainty. Normally, this structure is used for integer-order systems, and in this thesis, the author extends it to systems 

with fractional-order controllers. Simulation results demonstrate the robust stability of the proposed structure and are also 

better than other control methods and structures.  

The experimental quadrature tank (2×2 system) is used to verify the proposed method. First, the identification method 

for multivariable systems is by using the matrix fraction description (MFD) technique to convert the MIMO system into 

multiple-input, single-output (MISO) systems. From there, the least squares method of single variable systems is applied to 

identify system parameters. Then, the proposed method for the 2×2 system is used to design a fractional-order controller 
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and verify it on an experimental system. The controller is designed in Matlab and works well in real-time control mode 

(Real-Time Window Target).  

6.2 Limitations and future works 

Besides the achieved results, the research on the project also has many issues that need to be exploited: 

- The proposed methods are still not general enough to solve control problems for multivariable systems. Designing 

a FOPID controller with full tuning rules for all 5 parameters is still a challenging issue for researchers in this field. 

Furthermore, using explicit design methods for high-order multivariable systems instead of evolutionary 

algorithms is also an open problem in this field. 

- When verifying on the experimental system, the designed controller still runs on Matlab in real-time mode. The 

complete digital controller implementation of fractional-order control has not been studied in the thesis. And this is 

also the future work that needs to be focused on developing to bring fractional-order control into applications. 

- The experimental system in the thesis can only verify the 2×2 system, higher-order systems such as distillation 

column processes, due to budget and equipment limitations, have not been implemented in the thesis. This is 

important applied research to bring control theories into practical applications, and also bringing great economic 

benefits. 
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