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ABSTRACT

Fractional calculus and its applications are interesting problems that attract researchers from many
different fields. In the control field, fractional orders of integral and derivative terms are applied in the
classical PID controller and extended to a general PID controller, with the order of the derivative and
integral terms being real numbers. Many studies have proposed this fractional-order controller, mainly for
single-input, single-output systems. Meanwhile, industrial processes are mostly complicated multivariable
systems because of the mutual effects of the process variables. As a result of that, controlling these
systems is a challenge because it is difficult to manipulate each control loop independently. Various
control structures and methods have been proposed, but this is still an open problem that needs to be
researched intensively. In this thesis, the author proposes different solutions to solve the problem of
multivariable systems using fractional-order controllers. The contributions of the thesis are summarized
as follows:

- Propose a new control structure for multivariable processes that combines the simplified decoupling
technique and the Smith predictor to deal with delay times in real systems. Although the controller
structure is relatively complicated, the system’s performance is superior to other methods.

- The simplified decoupling technique of previous research is adopted in this thesis. However, the
burden of calculation when deriving each transfer function is still a problem that needs to be solved,
especially in the case of a higher order of multivariable processes. Therefore, the author proposed to use
particle swarm optimization (PSO) to reduce and simplify the transfer functions of decoupling and
decoupled matrices. Using the heuristic method will simplify calculations as well as increase accuracy in
the case of higher-order multivariable processes.

- Research fractional calculus and its application in process control, especially the fractional-order
PID controller (FOPID). Propose fractional-order controllers and their tuning rules for multivariable
controllers. In general, the author proposes two methods: for a 2x2 process using internal model control
and for 3x3 and 4x4 processes using multiple objective particle swarm optimization (MOPSO) with an
objective function that meets the criteria of system performance and robustness simultaneously. The
proposed methods are justified through simulation studies and also compared with other well-known
methods using benchmark models in process control.

- Robust stability is an important criterion to prove whether the designed system can be applied in
practice. In the thesis, the author uses the M-A structure and multiplicative output uncertainty to analyze
and evaluate the robustness of the proposed controllers. The simulation results prove the robust stability
of the proposed methods in comparison with other methods.

- In addition, the applicability of the proposed controller and fractional-order controllers is clarified
by experiments using the quadruple tank. The least squares method for identification of single-input,
single-output systems is extended to multivariate systems to derive the mathematical model of the tank
system, from which the proposed methods are applied to tune the control parameters of the proposed
controller. The obtained controllers are adopted to control the system using the Real-Time Window
Target of Matlab. The experimental results show that fractional-order controllers can be deployed in
practical applications.



TOM TAT

Tinh toan phan sb (fractional calculus) va cic ing dung ciia né 1a van d&é méi thu hat nhidu nha
nghién ctru tir nhidu linh vuc khic nhau. Trong linh vuc diéu khién, tich phan va dao ham bac phan sb
dugc tmg dung trong bd diéu khién PID ¢ dién va mé rong né thanh bd didu khién PID tong quat v6i bac
ctia dao ham va tich phan 1a s6 thuc. Nhiéu cong trinh nghién ctru di dé xuét bo didu khién bac phan sb
nay nhung chu yéu cho hé don bién. Trong khi d6, cac qué trinh cong nghiép hau hét 1a hé da bién phirc
tap vi sy anh hudng 1an nhau giita cac bién c6 trong hé thong. Do do6, diéu khién nhitng hé thong nay la
bai toan phirc tap vi kho c6 thé hiéu chinh ting vong diéu khién doc 1ap. Nhiéu cu triic ciing nhu cac
phuong phép diéu khién khac nhau di dugc dé xuat, nhung dy van 1a bai toan mé can tap trung nghién
ctru. Trong luan 4n nay tac gia dé xuit cac giai phap khac nhau dé giai quyét bai toan hé da bién st dung
bd didu khién bac phéan sb. Cac dong gop cua luan an dugc tom tit nhu sau:

- P& xuat cau trac diéu khién méi cho hé da bién trong d6 két hop ca k§y thuat phan ly don gian hoa
cho hé da bién va bd du bao Smith nhim dbi pho vé6i cac khau tré hién hiru trong cac hé thong that. Mic
du cAu trac bo didu khién twong ddi phirc tap, nhung hiéu qua mang lai t5t hon hin khi so sanh véi cac
phuong phap khéc.

- K¥ thuat phéan ly don gian hoéa cia cac nghién ctu trude duge sur dung trong luan an. Tuy nhién,
viée tinh toan va rat gon cac ham truyén thanh phan van 1a vin dé cin giai quyét, dic biét khi bac cua hé
da bién ting cao. Do do, tac gia dé xuat sir dung giai thuat toi vu hoa bay dan (PSO) trong viéc rat gon va
don gian hoa cac ham truyén thanh phan cta ma tran phan ly ciing nhu ma tran sau khi phan ly. Sir dung
thuat toan tién hoa s& don gian hoa viéc tinh toan va tang do chinh xac khi bac ctia hé da bién tang cao.

- Nghién ciru tinh toan phén s (fractional calculus) va img dung trong linh vic diéu khién, dac biét Ia
b6 diéu khién PID bac phan sb. Dé xuét bo didu khién phan sb va cac phuong phap hiéu chinh thong sb
cho céac bo diéu khién da bién. Cu thé, tac gia dé xuit 2 phuong phap hiéu chinh: cho hé bac thip (2x2) sir
dung cAu tric md hinh nodi va cho hé bac cao (3%3, va 4x4) st dung tdi wu hoa bay dan da muc tiéu
(MOPSO) véi ham muc tiéu dam bao tiéu chi dap ung ddng thoi bo diéu khién phai co su 6n dinh bén
virng. Cac phuong phap d& xuit déu dugc kiém chung thong qua viéc mod phong va so sanh véi cac
phuong phép khac da duoc cong bd sir dung cac md hinh chuan thudng dugce nghién ciru trong linh vuc
diéu khién qu4 trinh.

- Sy 6n dinh bén virng 12 mot tiéu chi quan trong minh ching cho viéc hé théng thiét ké c6 thé ung
dung trong thuc té hay khong. Trong ludn an, tic gia s dung cdu tric M-A va sai sb nhan dau ra
(multiplicative output uncertainty) dé phan tich, danh gia 6n dinh bén viing cho cac bo diéu khién dé xuét.
Két qua md phong déu minh chimg duoc sy 6n dinh bén viing khi so sanh véi cac nghién ciru khac.

- Bén canh d6, kha ning tng dung thuc té cta bo diéu khién dé xuét cling nhu diéu khién bac phan s6
cling dugc 1am rd bang thyc nghiém st dung hé bdn bdn nudce lién két (quadruple tank). Phuong phap
binh phuong tdi thiéu trong nhan dang hé don bién dugc mé rong sang nhan dang hé da bién va tmg dung
dé nhan dang va mo hinh héa hé bon nudc, tir d6 dp dung cac phuong phap dé xuat dé tim théng sd b
diéu khién tuong ung. Bo diéu khién tim dugc duoc ap dung diéu khién truc tiép hé théng that & ché do
thoi gian thuc ciia Matlab (Real Time Window Target). Két qua thuc nghiém ching to phuong phéap diéu
khién bac phan s c6 thé ap dung vao diéu khién vao cic ing dung trong thyc té.

Xi



INTRODUCTION

1. Problem statement

The centralized control method with multi-loop PI/PID controllers is often used for multivariable processes with low
interaction (interaction between process variables is negligible) because of its simple structure, efficiency, and appropriate
performance. However, these controllers often perform poorly when interaction increases significantly. In that case, some
advanced control algorithms are used, such as model predictive control (MPC), fuzzy control, neural networks, etc.
However, they face many difficulties in real-time implementation.

Therefore, decentralized control with decoupling techniques attracts many researchers. The decoupling technique is
used to minimize interactions between variables in the system, and as a result, simple independent control loops can be
designed. That means, from a multivariable system with many inputs and outputs, we convert it into many single-variable
systems. In addition, time delay is also an existing feature in process control systems. The delay time will cause difficulties
in analyzing the characteristics and designing a controller for the system, especially in multivariable systems with different
delay times, as well as adversely affect the response in most cases. This thesis will also set a new approach when designing
PID controllers, which is fractional-order control based on the mathematical foundation of fractional calculus.

Another important aspect when designing a controller in an application is system modeling. In this study, the author
will also extend an identification technique for single-variable systems to use for multivariable processes.

2. Research goals

Based on the issues mentioned above, in this thesis, the author will focus on researching the following contents:

- Proposing a solution to improve the calculation method of the simplified decoupling technique.

- Proposing a new control structure for multivariable systems to improve the response of the system not only when
the set-point changes but also when affected by process disturbances. In addition, it is also possible to eliminate the
influence of delay times on the process. Evaluate the robust stability of the proposed control structure.

- Research on fractional-order PID controllers is based on the mathematical foundation of fractional calculus.
Proposing a new method to design a fractional-order PID controller for multivariable systems.

- Build an experimental model to verify the proposed method. Propose a method to identify parameters of
multivariable systems to obtain mathematical equations of the experimental model for the design and evaluation of
the proposed methods.

3. Research scopes

- Inthis thesis, the author limits the study to square multivariable systems represented by a nxn matrix.

- Regarding theoretical research on multivariable systems, the author will generalize to n-order systems. However,
in the simulation study, the author only mentions 2x2, 3x3, and 4x4 systems, which are common systems in the
field of process control. In the experiment, due to equipment limitations, the author only tests on the 2x2 system.

4. Research approach and methods

To ensure the novelty of the research, the author will review recent related works from prestigious international
journals in the field of research. The proposed method will also be simulated and compared with other outstanding methods
from works in prestigious journals. In addition, an experimental model will also be built to demonstrate the practical
applicability of the proposed methods.

5. Scientific and practical contributions

The achieved results are summarized into the following main contents:

= Scientific contributions:



- Analyzing the necessity of fractional order in describing the dynamics of systems. From there, the necessity of
fractional calculus in the control field is also explained. Research the effects of fractional-order derivatives and integrals
on control signals in classical feedback controllers. The simulation results show that the fractional-order controller makes
the control signal flexible, less affected by disturbances, and also makes the entire control system more robust.

- Using the simplified decoupling technique proposed by Vu and Lee, the author has successfully proposed the use of
the PSO algorithm to simplify the component transfer functions of the decoupling and decoupled matrix. This is to simplify
calculations when the order of the system increases. The achieved results demonstrate that the proposed method gives
better approximations than the ones in previous publications.

- Proposing a new control structure for multivariable systems that combines the simplified decoupling technigue and
the Smith predictor. Although the controller structure is relatively complicated, the performance is better when compared
with other methods.

- Research fractional calculus and applications in the field of control, especially the fractional-order PID controller
(FOPID). Proposing fractional controllers and parameter tuning methods for multivariable controllers. The author proposes
two specific methods:

v' For 2x2 multivariable systems, use the internal model control (IMC) with the proposed fractional controller.
To find the parameters of the controller, the author tunes via the desired response time constant to compromise
between the system response to the servomechanism problem (set-point changes) and the regulator problem
(disturbance changes).

v' With higher-order multivariable systems (3x3 and 4x4), use multi-objective swarm optimization (MOPSO)
to find control parameters with the objective function that minimizes the error when both the set-point and
disturbance change. The feasible solutions of the optimization problem will converge on the Pareto front, and
from there, the appropriate solutions (control parameters) will be selected through the value of the maximum
sensitivity function M; to ensure the robust stability of the control systems.

- The proposed methods are verified through comparison with other published methods using benchmark models
commonly researched in the field of process control.

= Practical contributions:

- The design methods proposed in the thesis are model-based design methods, so finding the mathematical model of
the process is essential. However, in reality, there is always a mismatch between the obtained model and the actual model
of the system, leading to the design method not being applicable in practice. Therefore, robust stability is an important
criterion that demonstrates the applicability of the control system. In the thesis, the author uses the M-A structure and
multiplicative output uncertainty to analyze and evaluate the robustness of the proposed control methods. Simulation
results demonstrate the robust stability of the proposed methods, meaning they have high applicability.

- Research on identification methods for multivariable systems by using the matrix fraction description (MFD)
technique to convert MIMO systems into multiple-input, single-output (MISO) systems. From there, we can apply the
common identification technique for single-variable systems (the least squares method) to identify multivariable systems.
Applying the proposed method to identify the model of the quadruple tank.

- The design method for the fractional-order controller is experimentally verified for the quadruple tank with a 2x2
transfer function matrix. The control results clearly demonstrate the practical applicability of fractional-order control as
well as the proposed design method. In the world, the field of multivariable system control is widely applied in distillation
column systems and production processes, bringing great economic benefits. The proposed method has also demonstrated
high applicability, so if implemented in practice, it will have great practical significance.

6. Thesis structure: The thesis is presented in 6 chapters, including figures, tables and appendices.

2



Chapter 1. OVERVIEW
1.1. Introduction

Fractional calculus has been around for a long time. However, the application of fractional computation in control has
only developed in the last two decades. In particular, Podlubny proposed the fractional-order PID controller as a general
case of the classical PID controller. The controller parameters are added with two additional coefficients: orders of the
derivative and the integral terms (fractional order). This is a new research field in control engineering with many open
problems, and that is also the approach of the thesis, which is fractional-order control based on fractional calculus.

1.2. Overview

An overview of the research and development of fractional-order control is presented in detail in the thesis, from
references [1-47]. The references [48-100] are reviews of research on methods of controlling multivariable systems as
well as methods of designing integer or fractional-order PID controllers applied to multivariable systems.

According to the author's review, up to the time of the study, the structure of the decoupling controller combined with
the multivariable Smith predictor had not been studied. Therefore, in this thesis, the author proposes to use this structure to
control multivariable systems. In addition, research on fractional-order PI/PID controllers (FOPI/FOPID) for multivariable
systems is very limited, and if there is, most of them only deal with the 2x 2 systems. Typical related works are articles
[85, 98, 100]. The work [85] uses inverted decoupling combined with a FOPID controller designed according to the IMC
structure. The results have only been verified for some processes proposed by the authors and lack objective comparison
with other methods. The article [100] applies the FOPI controller to a coupled-tank system (TITO); however, the approach
is not suitable for higher-order systems when combining feedback and feedforward control. The article [98] uses
centralized control combined with a simplified decoupling technique for a 2x2 system. Regarding the controller, the
authors used the search algorithm method, the dynamic bat algorithm, to design the FOPID controller. In fact, these
evolutionary techniques should only be used for systems that can not be completely solved by conventional methods (such
as high-order multivariable systems). Therefore, the controller structure commonly used in the thesis is called the
simplified decoupling technique combined with the Smith predictor using a fractional order controller (F-SDSP).

The analytical tuning rules of the proposed controllers use both the internal model control (IMC) for the lower-order
multivariable system (2x2) and the search algorithm for the higher-order systems (3x3 and 4x4), specifically the multi-
objective optimization algorithm using swarm optimization (MOPSO). To evaluate the robust stability of the entire control
system, the M-A structure commonly used for systems with integer order is also extended to be used for systems with
fractional order.

Chapter 2. THEORETICAL FOUNDATION
2.1 Fractional calculus in control

There are many different definitions of fractional integrals and derivatives. However, the most commonly used

definition is that of Riemann-Liouville, for details we can refer to references [9-13]

@

¢+ Definition 2.1: definition Riemann-Liouville (R-L) of fractional integrals.

wemy_ L [_f@
oD, f(t)—r(a) ! (t_T)l_adT (2.1)

where, 0 <a <1 and T'(x) is Gamma function, where T'(x) = Ie’”ux’ldu (2.2)
0

¢+ Definition 2.2: definition Riemann-Liouville (R-L) of fractional derivatives.
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Definition R-L of fractional derivatives based on fractional integrals:
a d -(1l-a
DI FO = [ DO

+«+ Laplace and Fourier transform

(2.3)

Laplace and Fourier transforms are basic and important tools of control engineering. Details of these transformations

can be referred to [10].
+« Fractional ordinary differential equation

Fractional ordinary differential equation (FODE) is the basis for describing the dynamics of fractional-order systems.

The fractional difference equation is described by equation (2.4):
a,D™y(t)+a, D™ y(t)+...+a,D®y(t) =b, D" u(t) +...+b,D*u(t)
where: a,...a,; b,...b, areconstants
Ay <...<a,,<a,; f,<...<p, are positive real numbers

(2.4)

Néu o, va B; are integer multiples of a base order, the system will be commensureate order and if there is no

common coefficient, it is called non-commensurate order.
«» Fractional-order transfer function

From (2.4) and using Laplace transform (initial conditions equal to 0), we have fractional-order transfer function:

P A
b,s" +...+b,s™

G(s)= a,s™ +a, ;S +...+8,5™
. -

+«» Fractional-order approximation in frequency domain
Oustaloup approximation is described by the following equation:

/

S+,
s =g” ~ K
[, ] k=Z—NS+a)k

(2.5)

(2.6)

where, « is the non-integer degree (o €R™); [a),, a)h] is the approximate frequency range; K is the adjustment
parameter so that both sides of the above equation have a gain of 1 at the cut-off frequency, easily seen as @, =1rad/s ; N

is the number of pole/zero roots (usually N is chosen from 3 to 8). Usually, @,, , are chosen as 0.001w, and 1000,

respectively. The gain, zero and pole are calculated by the following formulas

Bode Diagram

40
B
K=w gt e
" %o T -~ -N=8
(k+N+05-05a)/(2N+1) H
4 @y 20
a)k = a)l _
Y=
(k+N+0.5+0.50)/(2N +1) H Y {
@, 0l il
O =@ — £ | N
e

Frequency (radis)

Figure 2.1 Bode plot of Oustaloup approximation

2.2 Fractional-order PID controller

ol S SO E UV D S OO S U N o
107 102 1071 10" 10! 10? 10° 104

Figure 2.1 illustrates the Bode plot
of s in the frequency range
[10°, 10*] (rad/s) using
Oustaloup's approximation method.
The number of pole/zero is chosen
intwo cases N =4 and N = 8. To
increase calculation speed, in this
thesis, the author choses N = 5.

Fractional-order PID controller, P1*D*, proposed by Podlubny [15]. Its transfer function has the following form:

G.(s)=K, +K—;+ Kos*  (4,u=0)
S

(2.7)

where: K,, K, Kp are coefficients of proportional, integral and derivative respectively; A, u are the fractional orders
of integral and derivative term respectively. It is obvious that if 2 =1, x=1 it becomes the classical PID controller.
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2.3 Decoupling techniques using for multivariable systems
2.3.1 Introduction to decoupling techniques

Consider the decoupling control system shown in Figure 2.2, where G, is the closed-loop controller, D is the
decoupling matrix. G and Q are the multivariable process and the decoupled multivariable process, respectively.

The objective of a decoupling technique is to determine the
U Vi decoupling matrix D, such that G(s)D(s) = Q(S), is a
- L diagonal matrix.

S o K o e B
i : . . . . . . _ . . . (2.8)

[1 y Oy - O, |dy ... d 0 ... q,
> > There are three decoupling techniques, but in this thesis, the
_______________ Q)L simplified decoupling technique is adopted (the rationale is
analyzed in the thesis). In that case, the diagonal elements

of decoupling matrix equal to unit, dii = 1, i =1+n
Figure 2.2 The decoupling control structure
2.3.2 The simplified decoupling method
In general, elements (i, j) of decoupling matrix D(s) can be determined as follows:

G .. L
djizdiij, Li=12,...,n 0] (2.9)
The diagonal elements of decoupled matrix can be calculated as follows:
g..
= 2 2.10
qll 1l Aii ( )
where, C = (adjG)"and A, = [G ®(G’1)T } =g, |%| where ® is element product.

2.4 Smith predictor for multivariable systems

D(s) Figure 2.3 describes the controller structure using Smith predictor
YGs) for multivariable systems. Then, the closed-loop transfer function
matrix between output Y(s) and input R(s) is as follows:

R(s) u(s)

_>®_> Gc(s)

G(s)

Y

> G(s) H(s) = G(5)G, (5)Go ()G, (5)] | +c“;0(s)csc(s)]1
J o0 = H(s) =G (5)G," (5)Hq (9) (2.11)
= where, Hq (5) = Go(9)G,(9)[ 1 +Go(9)G.(9) | 2.12)

Figure 2.3. Multivariable Smith predictor structure  H(s) is closed-loop transfer function with non-delay process G,(s)
2.5 Identification for multivariable systems

Overviews of research on system identifications are presented in the thesis, from references [116 - 138]. In this thesis,
the author uses well-known identification techniques for single-variable systems, the least squares (LS) method, and
extends it to apply to multivariable systems.
2.5.1. Least squares method for single variable systems

The block diagram of the discrete single variable linear system is shown in Figure 3.1, where z is the discrete operator;
6 is the delay time. The linear differential equation of a discrete, linear and invariant system has the following form:
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Y(tk) + aly(tk—l) ...t ana y(tk—na ) = b1u (tk—l) ot bnbu(tk—nb ) + V(tk) (2-13)

v
u Y, roy
—> G(zY)z”’

Figure 3.1. Block diagram of discrete linear systems
Equation (2.13) can be expressed in vector form according to the linearity of the model parameters:
y(t) =¢" ()8 +V(t,) (2.14)
where: @' (t,) =] -Y(t ).~ y(t ) u(t,,)...u(t,_, ) | : regressor vector

0=a..a, b..b T : vector of system parameters

Using well-know least squares method, we obtain the solution of Eq. (2.14):
n 1 N -1 1 N
0= |:_Z¢(tk )o' (t )} _Z¢(tk)y(tk) (2.19)
N N i3

2.5.2 Matrix fraction description for multivariable systems
For identification purpose, another form of MIMO normally uses as follows:
yO)+ Ayt -1 +...+ A y({t—-k)=Byu(t)+Bu(t-1)+...+ B u(t—k) (2.16)
where: A (nxn),..., A, (nxn), B,(mxn), B,(mxn),..., B,(mxn) : are constant matrix
Representing a transfer function matrix by two polynomial matrices is called matrix fraction description (MFD). To
ensure uniqueness of the identified model, the simplest form of MFD is used, which is the diagonal form.

A@ 0 ... 0 B.(a) By(@) ... B,(q)
: B B ... B
Azzs(Q) : . B(q) = 21:(Q) 22:(q) y Zrn:(q)

0 Am(q) Bnl(q) an(q) Bnm(q)

where A,(q), ..., A, (q) are polynomials with a coefficient of highest order equals to 1, and the orders of polynomial
B,(a), ...B,,(q) are less than or equal to the order of A,(q).
This method is simple and a MIMO system becomes MISO systems. Thereofore, the complex of multivariable systems
especially high-order system, will be minimized.
Chapter 3. SYSTEM PERFOMANCES AND ROBUST STABILITY
3.1 Performance criteria

A(Q) = (2.17)

Consider the classical feedback systems shown in Figure 3.1. To evaluate the performance of the proposed method, in this
thesis, the following performance indices will be considered.

d 3.1.1. IAE index (Integral Absolute Error)
+

r e y T N
‘%_’_ G. > IAE = [ le@®|dt~>|e] (3.1)
k=1

where, T is a specific time and is chosen as the simulation time. From 1AE

A 4
@

Figure 3.1. The classical control structure. index, we also have other indices:

- Jr: is IAE index when the set-point (r) is changed.
- Ju: is IAE index when disturbance (d) is inserted to the control loop.
3.1.2. ITAE index (Integral of Time-weighted Absolute Error)



N
ITAE = J'0Tt|e(t)|dt ~ >t e 3.2)
k=1

3.1.3. TV index (Total Variation)
To evaluate the amplitude as well as the amount of change of the control signal, TV index is often used:

TV=i|u(k +1)—u(K)| (3.3)

3.1.4. Maximum sensitivity function
From figure 3.1, the open loop transfer functionis L = GG, .
In the frequency domain, L(j®) , we have a formula to
obtain the maximum sensitivity function:

g M, = max|S(jw)| , where S(jw)=(1+ L(jw)) "
(3.4)(3.4)
In figure 3.2, M; is the inverse of the shortest distance from the
Nyquist of L( j@) to the critical point (-1, jO) in the complex
plane. To guarantee the robust stability of the closed-loop
system, the typical range of Mg is 1.2 + 2 [139].

ImA

Figure 3.2. Geometry illustration of sensitivity function

3.2 Robust stability for multivariable systems
3.2.1. Structure for robust stability analysis

To analyze robust stability of a control system (figure 3.3), the M-A structure as figure 3.4 is addressed. If the nominal
system is stable, then M will be stable and A is uncertainties that can make the system unstable.

A |
UA yA
> M
Figure 3.3. Robust stability with multiplicative output uncertainty Figure 3.4: M-A structure for robust stability
analysis

3.2.2 Robust stability condition using structured singular value (SSV)
«% Definition (SSV): Given matrix M and A =diag{A;} where G(A)<1. The positive semidefinite function (M) is
called SSV and its definition is as follows:

. 1
u(M)= min {k,|det(I —k,MA)=0, 5(A)<1 }

(3.5)

If no A structure exits, p(M)=0
+« Theorem: Assume that the nominal model M and the uncertainty signal A are stable. Then the structure M- A in
figure 3.4 is also stable for all A with 5(A)<1, Vo ifandonly if: u(M(jo))<1 Vo
where, M(s) =-W,GG,[I +GG,]" (3.6)
Chapter 4. THE PROPOSED METHODS FOR MULTIVARIABLE PROCESSES
4.1 The combination of simplified decoupling with Smith predictor



The general structure of the controller is described in Figure 4.1. In which, D(s) is the decoupling matrix for the
multivariable process G(s), Q(s) is the decoupled process matrix (Q(s) = G(s)D(s)) and Qo(s) is derived from Q(s) when all
delay times are removed.

Q(s) Simplified decoupling 9010(8) . 0(3) 8 @1
SR 6.0 1 o o 669 G.e= . VL '
A ________________________________________ 0 0 ... gn(s)
‘ """""""""""" d :Cl Lj=12,...mi=]j (4.2)
Smith predictor . g, = i—'l'l 4.3)

Where, C = (adjG)" and A, =[G®(G™)" |
® 1is the element product of matrices.

Figure 4.1: The structure of simplified decoupling combined with '
multivariable Smith predictor

The diagonal components of the decoupling and decoupled matrix are very complex and can not be used for controller
design. In this thesis, the author has proposed a method of using the swarm optimization algorithm (PSO) to approximate
the above components to simple and common forms in the field of process control.
4.2. The swarm optimization algorithm to approximate models
4.2.1. Introduction to swarm optimization algorithm

At each step, all individuals are updated with two best values: the individual best position (Pbest) and the group's best
position (Gbest) up to the current step. The well-known equations used to update the position and velocity of each
individual are as follows:

Vi (K +1) = @V, (K) + €0 (Xppes, — X; (K)) + C,0, ( Xgpesr — X (K)) (4.9)

0= —Wk; X (K +1) = x, (k) +V, (k +1) (4.5)

max

Where, v,(k) and x (k) are velocity and position of the i indivitual; k is iteration step; ci and c, are accerleration
coefficients or learning coefficients; o, and o, are real numbers which randomly generate in range of [0-1]; ® is the
inertial weight; M is maximum iteration.
4.2.2 Proposing to use PSO to approximate models
The integer-order and fractional-order transfer functions are suggested to approximate the complex ones:
Gm(s)zm; G (s):Ke—_as (0<a, <1<a, <2) (4.6)
(r,s+1)(z,s+1) " 7,5 +7,5" +1

Where, 7, and 7, are time constants, without loss of generality, assuming 7, >z, >0; K is gain; z,iS non-negative,
when 7, =0 the above transfer function becomes second order plus delay time (SOPDT), and 7, =0 simultaneously, the
transfer function becomes first order plus delay time (FOPDT); € is delay time; «,, o, are fractional order.

For integer transfer functions, from the general transfer function (4.6), we can obtain a number of transfer functions
such as: first order plus delay time (FOPDT), second order plus delay time (SOPDT) and second order plus delay time with
negative zero (SOPTDNZ) as equation (4.7)

Ke * G.(5)= Ke G.(5) = K(zr,s+1)e”
75+1 (z,;s+D(7,5+1) (z,;s+D(7,5+1)
Similar to fractional-order transfer fucntions, afer approximation, we have some following forms:

8
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Ke*ﬁs

7,5 +7,5" +1

Ke—ﬁs
8% +1

G,(s)= (0<a<1) (4.8); G (s)=

m

O<o, <l<a, <2 (4.9)
1 2

The approximation algorithm is described as follows:

The parameters 6 , Kmin, Kmax and 7., (i=1+3) are

determined based on open loop response with step function

Initialize a set of N particle positionsx° ={[K 7, 7, 7, & a, ]}0

input. 7
T . : . P o _ 0
X = [K T, T,0 Q ] - Setinitial particles best positions (Pbest) as initial postions: P, = X
- Evaluate the fitness values of the initial positions
Kmin <K< Kmél>< - Find the global best position from the initial positions: G,
N
0<7 < Ty >
0<r. <t - Update the inertial weight
-2 2max _ iti iti
(4. 10) Update the velocities and positions

0<7, <75

T
O< <1

Improper model of the Create randomly
1< o, < 2 new position? another new position

Evaluate the fitness value of each particle

v

- Update particles best positions: P,
- Update global best position:G,

best

Figure 4.3. The flowchart of PSO algorithm for model
approximation

4.3. The proposed method to design the fractional-order PI1/PID controllers (FOPI/FOPID)
In this thesis, the author proposes a novel structure of a fractional-order PID, called 1° P1* D controller. The general
transfer function has the following form:

0.(s) = Kcsio(1+ t* +rDs*‘] (4.12)
T

| 7eS+1

Where, K_, 7,, z, are gain, integral time, derivative time respectively; 2, x are fractional order of the integral and
derivative term respectively; o is fractional order of ideal integral term, and: o =1- 4. In special case, 1 =1, we will have
o=0; 7 is time constant of the first-order lowpass filter, in case of no filter z_ =0.
4.3.1 Propose a design method based on internal model control (IMC)
4.3.1.1. The tuning rules for some typical processes

Table 4.1. The tuning rules of controllers for some cases

Models The tuning rules of controllers
T
q.(s)= K=—: 7=r;A=0a,0=1-«
%) 8% +1 ¢ Kz, !
(0<a<l) TD:TFZO
F](S)—* K=2 :7=z;7,=2 A=a,; c=1-a
° 7,5 +7,5% +1 ©2Ke, N NP g v L
O<a <l<a,<2)




[

H=a, =0y, Tpg =

2

4.3.1.2. Robust stability analysis for the proposed controller.
The proposed controller (figure 4.1) is equivalently transformed to M-A structure as figure 4.4.
Matrix M is calculated as follow:

M(s) =W, (S)Q(3)G, (5)[1 +Q,(5)G, (3)] (4.13)
According to the theorem in section 3.2.2, the condition to
ensure robust stability with multiplicative output uncertainty
is as follow:
u[M(je)] =W, (j0)Q(ie)G. (j)[1 +Q,(je)G,(jo)] | <L Ve

Figure 4.4. M-A structure of the proposed controller (4.14)

____________________________________________

1

Q)

D)

G.()

4.3.2. Design PI/PID controllers for high-order multivariable processes using multi-objective optimization
4.3.2.1. Multi-objective particle swarm optimization (MOPSO)
MOPSO algorithm is described in form of pseudo-code as figure 4.5:

1: A=0

2 for i = 1: Nparticle

3 initialize xi, vi

4 constraint(x;)

5: Xpbest,i = Xi

6 end

7 A = dominance(Xpbest)

8 k=0

9: while k < MAX

10: for i = 1: Nparticle

11 Vi (k +1) = @V, (K) + €0 (Xopesy = X; (K)) + C,0, ( Xgpesr — X (K))
12: X (k+1) =%, (k) +v,(k +1)
13: constraint(x;)

14: Xi = mutate(x;)

15: if Xi domninates Xppest,i
16: Xpbesti = Xi

17: end

18: end

19: A = dominance(Xppest)

20: update (A)

21: k =k+1

22: end

Figure 4.5. The pseudo code of MOPSO algorithm

4.3.2.2. Using MOPSO to design a general-oder PI controller.
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Consider a closed-loop control system as shown in Figure 4.6, where g is the proposed controller; q is the diagonal
component of the decoupled matrix; r, d are the setpoint and disturbance signal respectively
d The controller in this case is derived from the proposed

+ - - - _ -
r T_ .. N % RN controller (4.12) without using the filter (7. =0), and is

rewritten as follows:

0.(5)= é(KC +K_;] (4.15)
S S
Figure 4.6 The classical closed loop systems

The controller is designed to achieve a compromise between system response and disturbance resistance, so a multi-
objective optimization algorithm is used. The design steps are as follows:
Initialization Stage 1: using MOPSO algorithm:
_ Min J(x) =[J,(x),J4(X)]

MO‘I')SO where, x=[K, K, 2 O']T :J,,J, are IAE indices, Eq. (3.1)
Stage ! Kcmin < Kc < Kcmax
;V Th t t 0<KI<Klma1x 4.16
oF _ | e constraints: 07<i<1 (4.16)
0<0<03
N Stage 2 where, 1€[0.7,1], (c€[0,03]) and K, Ko Kime are chosen
based on open loop response of the system.
Y | Stage 2: After obtaining the PF from stage 1, the maximum sensitivity
function (3.4) is suggested to appropriately choose the control paramters to
guarantee the robust stability of each control loop
Figure 4.7 The flc?wchart of the proposed M. 2 max 1 (4.17)
tuning steps odaa]|1+9.(8)q(s)],_,,

4.3.2.3 Robust stability analysis of the multivariable processes.

In figure 4.8, matrix M(s) is calculated as follow:
M(s) =-W, ()Q(s)G, (5)]1 +Q($)G, ()] (4.18)
According to the theorem in section 3.2.2, the condition to

ensure robust stability with multiplicative output uncertainty is
as follow:

H ) uM(jo)] = #{W, je)Q(i@)G (je)[1 + Q(j0)G. (jo)] | <1 Vo

(4.19)

Figure 4.8. M-A structure for robust stability analysis

Chapter 5. SIMULATION AND EXPERIMENT
5.1 Simulation study
To ensure objectivity when simulating and verifying the proposed methods, and to easily compare with other famous
methods, benchmark models commonly used in the field of process control are considered to evaluate the control responses
as well as the robustness of the proposed methods.
5.1.1. The proposed method for TITO processes
5.1.1.1 Distillation column Vinante and Luyben (VL)

11



Transfer function matrix of VL column was first introduced by Luyben [143], the matrix is as follow:

-2.2¢° 1.3e°% The decoupling matrix is obtained:
G(s) = 75+11 7s+1 1 0.591
_28e7 .8s 4.3e’0'35S D(S) = 0651(928 “‘:I.)e_l"lsS (51)
905s+1 92541 95571 !
The two diagonal components of the decoupled matrix can be calculated according to table 4.2 (in the thesis) as follows:
0,0, —2.2e° (13e°*)(2.8e*% ( 9.2s +1j
—q _ - n 5.2
%= 0 0,  TIs+1 ( 7s+1 ){ 9.55+1 )\ 4.3e0%* ©.2)
4370 (1.3 (287" | 7s+1
Oy, = U — 91292 — _ ( sj (5.3)
O 9.2s+1 7s+1 )L 9.55+1 )\ 2.2¢
The PSO algorithm will be used to approximate two complex transfer functions g, and g,, , the approximate results are:
g, - -1.3629%° . q, - 2.6679¢* (5.4)
" 6.6757s% +1° ? 8.8871s""" +1 '

The step response of the original transfer functions and the corresponding approximate functions are compared in figures
5.1 and 5.2. The approximate responses are also compared with the coefficient matching (CM) method proposed by Vu and
Lee [67]. In this case, the results are equivalent and almost equivalent to the responses of the original transfer functions

0 T T T T T T T T T 3
——pso
02 .. a1 || 25¢ —
- =Vu pso
-0.4 - T e q22
2r = =Vu

-0.6 -

-
o
T

-0.8 -

Amplitude
Amplitude

-
T

s

et
]
T

1.2

0 ; 1 ‘0 1 ‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50 o 0 ; 1‘0 1 ‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50
Time (min) Time (min)

Figure 5.1.Step responses of gi1 and its approximation (VL) Figure 5.2.Step responses of g2, and its approximation (VL)

Based on Table 4.3 in the thesis, in this case, the desired response time constants for the two control loops are chosen

7,=1.9 and r, =1.6, respectively. Two FOPI controllers for two control loops have the following form:

1 1 1 1
0..(5) =-25765 (1+ T j 0:2(5) = 2.082 g5 (1+ T j (5.5)

Simulation results of the proposed algorithm and comparison with other methods: simplified decoupling combining
Smith predictor with integer-order controller (SDSP [144]) and centralized inverted decoupling (Garrido [68]) and are
presented in Figure 5.3a, b. Figure 5.4 demonstrates the robust stability of the proposed controller. Table 5.1 summarizes

-1.4

performance indices.

12 [ [ [ [ I I ‘ [ :__"_' ”:’ H 12 I I I I I - Tgl:::h
il Al . , / ——F-SDSP|
{l’ 08 4
0Bl |i) 4
X 08 ;
06 1i
04 o l
02 I;
02 |
0 i
0 0 10 1!‘0 JLJ 40 5Iu ﬁlg 7‘0 80 9‘0 100 o 10 20 30 Ilﬂ SIEI 60 70 80 90 100
Time (min) Time (min)
Figure 5.3a. Step responses of control loop 1 (VL) Figure 5.3b. Step responses of control loop 2 (VL)
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0ss S8V plots of abust say Table 5.1. Performance indices of VL column

T T
~--sDsP
04l Garrido |
ff\ ——F-SDSP

/ \ Methods IAE  ITAE V. u[M]
Proposed 52490 10166 10838 02974
(F-SDSP)
SDSP 34382 102.83 8.7549  0.3046
P~ e T - Garrido

45255 126.04 11.295 0.4107

Frequency (radis)

Figure 5.4. SSV plots for robust stability (VL)
5.1.1.2 Heavy oil fractionator
The heavy oil fractionator isa 2x 2 process often used to study control algorithms of multivariable systems in the field

of process control [70,145]. Its transfer function matrix has the following equation
Decoupling matrix is obtained:

4,057 1.77¢7 0.437(27s+1)e”*
G| 25+ B0s+1 (s - ! T 60s+1 56)
5.39e'% 5.72e7* | 0.9423(60s +1)e* '
50s+1  60s+1 B 50s +1 1

To design a controller for each feedback loop of the system, the diagonal components of the decoupled matrix must be
calculated. Based on the formulas in table 4.2 of the thesis, we can calculate as follows

0,0, 4057 (1.77¢7%)(3.39e™ \( 60s+1
O =0 — = - “14s (5-7)
J, 27s+1 60s +1 50s+1 )\ 5.72e
0,0, 572" (177¢7%)(5.39e" \( 27s+1
Op =0y — = - 27s (5-8)
g, 60s +1 60s+1 50s+1 )\ 4.05e

Using the PSO algorithm to approximate the above two transfer functions, the results are as follows:
2.3979¢ %" s 3.3877e7*

15,1333 2 6.08155 11 2" ~ 25 60025 11

Figures 5.5 and 5.6 illustrate the step responses of the original transfer functions compared to the approximated
transfer functions. It can be seen that using the PSO algorithm gives quite good approximation results, for example in the
case of the response of loop 2, the response of the original function and the approximated function almost the same.

In this case the desired response time constants for the two loops are chosen z, =14 and 7, =20, respectively. Two
FOPI controllers for two control loops have the following form

, 1 0.6732 1
+57077S°1759]T+1’ 0:2(5) = 500033 [“ 45.609250'9967j (5.10)

(5.9)

qll (S) =

s)=0.0622| 1+
9a (%) ( 4.166s

an —az
i o

L L L L L L
0 50 100 150 200 250 300 350 400 450 500 o 50 100 150 200 250 300 350 400 450 500
Time (min) Time (min)

Figure 5.5. Step responses of g1 its approximation (heavy oil) Figure 5.6.Step responses of g2, and its approximation (heavy oil)
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The simulation results of the proposed method are shown in Figures 5.7 a, b. Furthermore, to increase convincingness,
the response is also compared with other methods such as: inverted decoupling combined internal model control with filter
(IDIMC-F), and centralized inverted decoupling (ID-K) was proposed by Garrido [70]

DK e ID-K

- = -IDIMCF — =~ IDIMC-F
!'\_ - ——F-s08P F-SDSP
= - . Al

L L L — L L L L
250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Time (min) Time (min)

Figure 5.7 a. Step responses of control loop 1 (heavy oil) Figure 5.7 b. Step responses of control loop 2 (heavy oil)
Parameters on performance and robustness indices are listed in table 5.2. In addition, Figure 5.8 illustrates the SSV plots to
evaluate the robust stability of the proposed controller compared to other methods.

: SV bt ofroust sty : Table 5.2. Performance indices of the heavy oil fractionator
o Methods IAE ITAE TV HIM]
ﬁu,s; N ::‘.‘l '! il

Sodl 1 Proposed (F-

. | SDSP) 57.824 10173 1.4838  0.200
IR ! IDIMC-F 750.00 218750  1.7289  0.7068
e LB T ik

- 521 14561 14.67 :
Hinh 5.8. The SSV plots for robust stability 95.5 %6 678 03880

5.1.2. The proposed method for high-order multivariable processes
5.1.2.1 Ogunnaike and Ray (OR) distillation column

The well-known OR distillation column used to separate mixtures of ethanol and water is widely used in simulation
studies in the field of process control [55, 67-69]. Open-loop transfer function matrix and decoupling matrix:

[ 0.66e%*  —0.61e7%* —0.0049 "
6.7s+1  8.64s+1 9.06s +1 1 07549 0-8337S+1) 0o ) 1op0e052%
G(s) = 1.1e°% 236 —0.01e'* 0.533s+1
7| 3.25s+1 5s+1 7.095+1 D(s) = 0.3905e " 1 -0.0014
-9.2s -9.4s —s
~34.68¢ 46.2¢ 0.87(11.61s +1)e 10,8047 A388745+1) oo o0, (201135+41) g 1
| 8.15s+1 109s+1  (3.89s+1)(18.8s+1) | 8.7956s +1 5.5621s+1
(5.11)
The diagonal components of the decoupled matrix can be calculated as follows:
_ 0.3298(23.1802s +1)e* -1.2973e* .~ 0.5601(17.4859s +1)e* (5.12)

1 2113555 +1)(3.73635+1) | 2 (127395 +1)(0.5014s 1) ® (205 +1)(2.69155 +1)
The design sequence includes 2 steps: the first step will be to find the PF containing feasible solutions of the multi-
objective optimization problem, and then select the most appropriate solution based on performance criteria and robustness
index Ms. Figure 5.9 a, b, and c illustrate the results of the PF achieved by each control loop, the set of feasible solutions of
the optimization problem converges to the Pareto front. The final control parameters achieved are summarized in table 5.3.
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Figure 5.9 a, b, and c. The obtained PFs using two objective functions J, and J,

In this example, the proposed method is compared with methods such as multi-loop PI/PID controller [55] and
centralized PI controller (CPI) [146]. The simulation results are shown in Figures 5.10 a, b, and c¢. Similar to the previous
example, the criterion x is used to evaluate the robustness of the proposed method. The weight matrix for the output
multiplicative uncertainty of the three diagonal components of the decoupled matrix is selected as follows:

W, (s) = diag - s+02  s+02  s+02
° 05s+1  05s+1"  05s+1

This weight matrix corresponds to approximately 20% of the error of the gain parameter. Figure 5.11 demonstrates that
the structured singular value (SSV) of the proposed method always ensures the stability of the control system. Meanwhile,
in other methods, the value of « has a peak exceeding 1, meaning the control system will be unstable in this case.

Table 5.3. Control parameters and performance indices of OR column.

(5.13)

Pt veng Ky Ky To 4 o uM] e TV
1 1.504 0.157 . 1 0.055

Dé xuit 2 -0.089 0.970 . 0.832 0.174 0.1002 27.79 4.9783
3 1.377 0.107 . 1 0.01

Multi-loop 1 2250 0140 258 o
2 -0.490 0.155 3.37 . . 0.2479 39.99 6.1432
3 4.830 0.322 10.16 .

CPI

Ge(s) B 01276  25.73  4.9336

*G¢(s): full matrix (3x3), it means that we need 9 PI controllers, detail matrix can be refered in [146]

1545
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~Truong
--=-CPI

—— proposed

L L L L L
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Time(min) 0 1(;0 260 360 460 5(;0 600
. ime(min Time (min)
Figure 5.10 a. Step responses of control loop 1 (OR) Hinh 5.10 b. Step responses of control loop 2 (OR)
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Figure 5.10 c. Step responses of control loop 3 (OR)
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5.1.2.2. HVAC for temperature control (4x4)
The temperature control model for four connected rooms is known as the HVAC process [64]. The transfer function matrix

600

represents the process represented by a (4x4) matrix (5.14)

~0.098¢""*  -0.036e " -0.014e** -0.017e”* |
122s+1 149s+1 158s+1 1555 +1
-0.043e 7 -0.092e** -0.011e** -0.012e**
G(s)=| 47+l 130s+1 1565 +1 157s+1
-0.012¢*  -0.016e** -0.102¢™** -0.033e***
153s+1 151s+1 118s+1 1465 +1
-0.013e*  -0.015e** -0.029¢**  —0108e'*
L 156s+1 159s+1 144s+1 128s+1

S8V plot of robust stability

35

251

uIM]

——proposed
Truong | |
--CPI

107 1072

10°

Frequency (rad/s)

The decoupling matrix [67, 144]:

D(s) =

1

—0.341(121.918s + 1)6—9.1515

—0.081(132.251s + 1) %%

Figure 5.11. The SSV plots for robust stability (OR)

~0.115(124.604s +1)e**"* |

146.753s +1 164.976s +1 147.929s +1
—0.457(130.872s +1)e*™"* 1 —0.049(235.202s +1)e ***%  _0.04(188.514s +1)e 144
147.641s +1 228.983s+1 170.865s +1
—0.03(187.93s +1) —0.093(97.617s +1)e > 1 —0.304(118.3865 +1)e 1
1755 +1 117.144s+1 145.037s +1
—0.049(1946.796s + 1)e ™4 —0.073(152.319s +1)e*"**  —0.252(124.823s +1)e "% 1
1946.775s +1 166.805s +1 138.501s+1

(5.14)

(5.15)

Using PSO algorithm to approximate the transfer functions, the diagonal elements of decoupled matrix are as follows:

-0.0804e "

-0.0736e**

11

~100.0896s 11"

2

T117.2055s 11" B 1122066511

-0.092e 7%

4

 -0.097e7*
121.0125s +1

(5.16)

In this example, the centralized PI controller (CPI) method proposed by Ghosh and Pan [146] and the optimal retuning
method (1-ODP) proposed by Khandelwall and Detroja [147] are selected to compare with the proposed method. Similar to
the previous example, after using the proposed method, the controller parameters are achieved as shown in table 5.4. From
this table, we see that the integral term of the controller always has integer order in this case, meaning that the optimal
controller for the HVAC system is the traditional PI controller.
Table 5.4. Control parameters and performance indices of HYAC

Methods  Loop Kg K, A o uM] 1AE TV
1 -23.799 0.0094 1 .

Proposed 2 -37.292 00091 1 __
3 28036 00099 1 — 0.2019 199.72 207.146
4 -26.882 0.0085 1
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1-ODP — Geioor () _ 02287 37203 340.492

CPI G ()" _ 01999 376.60 200.588

*Ge-100p(S) Va **Gecpi(s): are full matrix (4x4), it means that we need 16 controllers, detail matrices can be
refered to [146]

In this section, the sequential change of the set-point is performed at times t = 0 (min), t = 500 (min), t = 1000 (min),

and t = 1500 (min) respectively for control loops 1 to 4. Figure 5.12 a, b, ¢ and d illustrates the response of the proposed
controller and other controllers when the set-point and disturbance change.

1.5

15
proposed proposed
—-=-:1-ODP ==-==:1.0DP
......... cPl u--u---cpl
1 '."‘ E;,“"‘ v g 1 — -
- |
> ] >‘:‘
0.5+ 05k
0 | | | 0 bt | ‘ |
0 500 1000 1500 2000 0 500 1000 1500 2000
Time (s) Time (s)
(a) (b)
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proposed proposed
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--------- CPI
1t 1 F—E‘-_
> N
0.5 0.5
0 oI5, I L 0 . ,,'"\_ |
0 500 1000 1500 2000 0 500 1000 1500
Time (s) Time (s)
(c) (d)
Figure 5.12 a, b, ¢ and d. Step responses of 4 control loops respectively
0.25 S'SV‘pI‘of o‘f‘r‘o'bust‘stabi‘lit‘yu . R
—propased Figure 5.13 shows the plots of x all three methods
---1.0DP

and all ensure robust stability in the presence of
uncertainty signals with a multiplicative output error.
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L I I !
10 102 107 10° 10’ 102 103
Frequency (rad/s)

Figure 5.13 The SSV plots for robust stability of HYAC
5.2 Experiment on fractional-order control for multivariable systems
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To verify the applicability of the proposed controller as well as the performance of the fractional-order controller for
multivariable systems, in this thesis, the author experiments on a system of quadruple tank.
5.2.1 Introduction to the experimental model

Figure 5.15 is the quadruple-tank system used for experiment. The flow of liquid pumped into the tanks is controlled
by two AC centrifugal pumps with pump speed adjusted by two inverters with control voltages u;, u2 (0-10 VDC). Two
three-way valves Vi and V-, divide the flow out of the pump into the upper and lower tanks (crossing each other as the
figure) with two dividing factors y,and y, (0<y,,7, <1 ). The liquid levels in the two lower tanks are hs, h2 (m) and are
measured by 2 capacitive sensors (LTi1, LT2) with the output signal being the industrial standard current (4-20 mA)
corresponding to the liquid level (0 — 0.6 m); Using a current-voltage converter to convert current into a voltage of 0-5
VDC. Four tanks have rectangular cross-sections areas As, A, As and A4 (m?) respectively.

: - The matrix transfer function of the system:

v v FT,,FT, :Flow transmitters
LT, LT, Level transmitters Kl (1_ 7/1) K27/2
1 PuPe: Pump s+1)(z,s+1 s+1
I S T X(&)]_|(ms+i)(ms+l) s+l R(S)
E Invy, Inv2: Inverters X 2 (S) K3]/1 K4 @- }/2) R2 (S)
KX G 4 34 7,5+1 (Z'ZS +l)(T4S +l)
%—ﬁ '—‘*vz (5.17)
LT, it
where: Klzﬂ; KZZ&; KSZ%; K4:T2k2
1 A A A, A,
an i =G || | e (5.18)
P g

220 VAC
DC power

+24 GND

Monitor

CPU

MATLAB
Real Time
Window Target 0-10VDC

Al1 PCle 6323

Al2 AO1H

@m@iﬂvnc NE

voltage 20

= A4
0-10 VDC

Figure 5.15 (a) The quadruple tank system ) Block iagram of the conrller

The quadruple tank system is a 2x2 process with input signals being two pump control voltages and two outputs
being the liquid level in the two lower tanks. This system is chosen for many academic simulation or experiment in the

Inverter

Inverter

I—H %

field of process control because the dynamic characteristics of the system will change differently depending on the
coefficient y,,y,. Figure 5.15 (a) is the actual system including the water tanks and control cabinet. Figure 5.15 (b) is a
diagram of the data acquisition (DAQ PCle 6323) and other hardware devices used in the system.
5.2.2 System identification using the proposed method

According to the system identificaton theory presented in chapter 2, the author conducted experiments to find the
mathematical model for the system.
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5.2.2.1 Data acquisition
Although the dynamic of the system is nonlinear, after approximating around the operating point, the system can be

represented in linear form with a 2x2 transfer function matrix, equation (5.17). Therefore, in this case, we choose the input

signal as a pseudo random binary signal (PRBS).

20 | s
10 0
= -~
0 5
o0 A0l J
1200
-
1000 1200

05 .5~
El oo
05 o 0.5 p
o 1000 1200 o 200 400 600 800 1000 1200

200 400 600 800
Mau d ligu Méu div ligu

Figure 5.16. In-out data for loop 1 identification Figure 5.17. In-out data for loop 2 identification

5.2.2.2. Using LS method for the two-input, two-output (TITO) system
Eq. 5.17 can be represented by a general matrix as follows:
{yl (t)HGu(q) Glz(Q)Mn(t)Hvl(t)} (5.19)
Y2(t)] [Ga(a) Gu(a)][r(t)] [va(t)
Applying the LS method mentioned in section 3.2 to each output, assuming the first output (the other is completely

similar), we have

1 Q 2

N > [A@y,(K)~(By(@)r (k) + B, (@)r,(k)) ] (5.20)
k=n+1

Solutions of (5.20) are obtained from Eq. (2.15), where:

e Ny, Ny, nz are orders of Au1(q), B11(q), Bi2(q) (n, >n, >n,)

VLSl =

y, (n, +1)
. y= yl(nlfz) 0= Ay, 8y, BBy, Doy, |
y(N)
R A R N BT R A R
v —yl(lz\l—l) —yl(l\:l—nl) r1(|\;-1) rl(N:—nl) rz(l\;—l) rz(N:—nl)

5.2.2.3. Validation
Using 800 samples from collected data to validate the identified results :

=]

| a2l
700 800 0 100 200 300 400 500
Méu d ligu

Figure 5.19 Validation of identified parameters of loop 2

J
600 700 800

sl
0 100 200 300 400 500 600
Méu di ligu

Figure 5.18. Validation of identified parameters of loop 1
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Paramerters 0 of both loops are obtained:

Converting to continous transfer functions with sample
time Ts = 0.1 (5)

[-1.4371] [-1.4280] G..(s) = 0.0002395s° +0.00891652 + 0.2691s + 2.807 (5.22)
—0.0059 0.0183 H s* +15.44s® +1053s” +877.55 +1.777 '
3 2
0.0000 0.0002 s* +15.44s° +1053s® +877.5s +1.777
' ' 0.001414s° +0.05352s° +1.618s +16.96
0.0002 0.0001 G, (s)= (5.24)
L= - L= . A s* +16.67s° +1065s® +1232s + 2.388 '
3 2
6,.(5)= 0.0006391s° +0.02419s? +0.7314s +7.669 (5.25)

s* +16.67s® +1065s” +1232s + 2.388

From the dynamic equations of the system, it can be seen that the component transfer functions are only of order 1 or 2.
Therefore, we use the proposed approximation technique, the above transfer functions (5.22) to (5.25) are approximated to

~ 1.5825¢ °**
Cu(S) =

-G, (s)=
496.2227s +1 12(9)

6.6411e "

0 L L . s L s L L L
o 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (seconds)

Figure 5.20. Step responses of Gi11(s) and its approximation

R Step Response

= G,,(5) =
495.2328s +1 a(S)

7.1072¢ %%

516.9899s +1 '

Gzz (S) =

3.2158¢ %
517.9853s +1
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Figure 5.21. Step responses of Gi2(s) and its approximation

Step Response

(5.26)

0

T 35
7 R | e
— xap xi 3t _— 1
6 - G21 ~ xap xi
d . 25+ - —G2
o5 s 25885 =
2 643 B g, =
£4 | ] R / 288 =
B / 6.425 e g / =
<3t/ (T L 4T ————
2t f 6.415 1k /
1 ."l 05/
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Figure 5.22. Step responses of G2i1(s) and its approximation
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Figure 5.23. Step responses of Gx(s) and its approximation

5.2.3 Controller design

Applying the simplified decoupling technigue, we can calculate the components of the decoupling matrix as follows
G, _ 4.1966(496.2227s +1) . G, _ 2.21(517.9853s+1)

d,=—=== Ay =—=2= (5.27)
G, 495.2328s +1 G,, 516.9899s +1
According to table 4.2 (2x2), the diagonal components of the decoupled matrix can be calculated as follows
6.6411e > 7.1072e°**
~ ~ —6.85s
0. (5)= Gy GG, _ 1.5825¢ 7™ 49523285 +1 516.9899s +1 (5.28)
G,, 496.2227s +1 3.2158e™
517.9853s +1
6.6411e>"° 7.1072e>'*
~ ~ —6.55s
0,,(5)= G,y — GG, _ 321588 ™™ 495.2328s +1 516.9899s +1 (5.29)
G, 517.9853s+1 1.5825¢ "

496.2227s +1
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The two Egs. (5.28) and (5.29) are quite complicated and can not be used to design the corresponding controller.
Using the proposed method to approximate i1 and g, to the a fractional-order transfer function, Eq. (4.9). Figures 5.24
and 5.25 are the step response of the original functions and the approximated ones.
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\I‘ q110 sk ——q22-fo| |

Amplitude
BE
/i
I
{
i
/
[
f
f
;I
!
Amplitude
{
!
{
{
/
/
|
[
|

-150 [} 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (s)

Figure 5.25. Step responses of g22(S) and its approximation
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Figure 5.24. Step responses of g:1(S) and its approximation

The approximated transfer functions :
-13.0755e " ~26.773%*
y O (5)= 5.30
219.40765*° +482.2408s +1 % () 1209.2s"" +540.7s +1 (5.30)

From the two above transfer functions, equation (5.30), we use the proposed controllers and their design method
proposed in chapter 4, the calculation formulas are summarized in table 4.1. The two resulting controllers:

—+0.455s°-2“89j ! ;gcz(s)=—2.0251(1+;+2.2364s°'7) !
482.2408s 2.55+1 540.7s 2.55+1

Simulation results of the quadruple tank are shown in Figures 5.26 and 5.27. To evaluate the effectiveness of the
proposed method (F-SDSP), the author compared it with other methods: SDSP ([144]) using integer order and inverted
decoupling method combined with Smith predictor (SID) (Garrido [80]). The input signals are changed sequentially at the
two inputs at times t = 0 and t = 150 (5).

12 T T T 12

0, (8)=

9, (s) = —3.3528[1+ (5.31)

1+ \ T
08
08

0.6
=06 E
04f

0.4 -
0.2

0.2 -

0 L L L L L
0 50 100 150 200 250 300 “0 50 100 150 200 250 300

Time (s) Time (s)
Figure 5.26. Step response of control loop 1 Figure 5.27. Step response of control loop 2

Compared with the SID method, the control signals of the proposed structure (integer and non-integer order) both give
better results with significantly smaller TV values (table 5.5). The other performance indices (IAE and ITAE) summarized
in table 5.5 also demonstrate that the F-SDSP method gives superior results than the other.

Figure 5.28 evaluates the robust stability of the control system. In this case, the multiplicative output uncertainty with
s+0.2 s+0.2
2s+1’ 2s+1
range (10— 10%) rad/s, all methods give similar robust stability. The values . in table 5.5 also prove that.

Implementing the fractional-order controller according to equations (5.31) together with the simplified decoupler
(5.27), using Matlab's Simulink to run in real-time mode (Real-Time Window Target). The controller diagram of the
system is built on Simulink as shown in Figure 5.29.

the weight matrix chosen as in simulation problems [Wo(s)zdiag {— }j In general, in the frequency
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Figure 5.29. Simulink diagram in real-time control mode
The results of controlling the quadruple tank are shown in Figure 5.30 a and b. From the figures, we can see that the
control responses of both tanks are similar to the simulation results (Figures 5.26 and 5.27). In tank 1, there is no overshoot
and the settling time is about 40 (s); In tank 2, there is an overshoot but not significant and the settling time is about 60 (s).
From the responses, we also see that the responses fluctuates slightly, mainly due to sensor noises. The experimental
process also proves that the fractional-order controller is capable of controlling real systems.
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Figure 5.30 a, b. Step responses of levels in both tanks
Figure 5.31 a, b show the control voltages of the system. It can be seen that when the liquid level reaches the desired value
(steady state), the control signals change very little with the goal of maintaining the system's set-points. The experimental
control signals have low frequency fluctuations due to noises in the measurement signal as well as due to fluctuations in the
liquid level in the tank as described above.
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Figure 5.31 a, b. The control voltages in both tanks
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Chapter 6. CONCLUSION
6.1 Results

In the thesis, the author focused on research to solve the problems of controlling multivariable processes. The research
results are achieved by using fractional-order PID controllers as well as developing the controller structure for
multivariable systems. The research results are summarized as follows:

Analyzing the advantages of fractional order in describing the dynamics of some famous equations. From there, the
necessity of fractional calculus in the control field is explained. Research the effects of derivatives and integrals of
fractional order on control signals in the feedback controller. The simulation results show that the fractional-order
controller makes the control signal less affected by noise and also makes the control system more robust.

Proposing a control structure for multivariable systems combining simplified decoupling and the multivariable Smith
predictor. The component transfer functions of the decoupling and decoupled matrix are complicated, especially when the
degree of the multivariable system increases. In this study, to simplify the above transfer functions to make it easier to
design the controller, the author proposes to use the particle swarm optimization (PSO) algorithm to approximate the
transfer functions to some simple forms with integer and fractional orders, achieving high accuracy when compared with
existing approximation and reduction methods. However, the proposed method is only suitable for linear systems with
assumed transfer functions known in advance and can not solve the general problem of any multivariable system. In
addition, the multivariable Smith predictor is incorporated into the simplified decoupling structure, which is intended to
eliminate the delay times in the characteristic equation of the closed-loop system, leading to a convenient design of the
controller.

Based on the proposed structure, the author has also proposed methods to tune fractional-order PI/PID controllers for
different multivariable systems. The research is summarized as follows:

- Propose analytical tuning rules for the proposed controller using an internal model control (IMC) for low-order
multivariable systems (2x2). The controller parameters are calculated based on the desired response time criterion.
However, this method is not general because not all cases can reduce the IMC controller to the form of a fractional
order PI/PID controller. For multivariable systems, this method is only suitable for 2x2 systems.

- For high-order systems (3x3 and 4x4), the author proposes a multi-objective particle swarm optimization
algorithm (MOPSO) to find the parameters of the controller. The objective function of the optimization problem is
to minimize the two steady state errors when the set-point and disturbance change. The feasible solutions of the
multi-objective optimization problem will converge to the Pareto front, and from there, the robust stability criterion
using the maximum sensitivity function index will be suggested to select the most suitable solution from the Pareto
front to ensure the robustness of the control system.

The robustness of the entire control structure will be re-evaluated using the M-A structure and multiplicative output
uncertainty. Normally, this structure is used for integer-order systems, and in this thesis, the author extends it to systems
with fractional-order controllers. Simulation results demonstrate the robust stability of the proposed structure and are also
better than other control methods and structures.

The experimental quadrature tank (2x2 system) is used to verify the proposed method. First, the identification method
for multivariable systems is by using the matrix fraction description (MFD) technique to convert the MIMO system into
multiple-input, single-output (MISO) systems. From there, the least squares method of single variable systems is applied to
identify system parameters. Then, the proposed method for the 2x2 system is used to design a fractional-order controller
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and verify it on an experimental system. The controller is designed in Matlab and works well in real-time control mode
(Real-Time Window Target).
6.2 Limitations and future works

Besides the achieved results, the research on the project also has many issues that need to be exploited:

The proposed methods are still not general enough to solve control problems for multivariable systems. Designing
a FOPID controller with full tuning rules for all 5 parameters is still a challenging issue for researchers in this field.
Furthermore, using explicit design methods for high-order multivariable systems instead of evolutionary
algorithms is also an open problem in this field.

When verifying on the experimental system, the designed controller still runs on Matlab in real-time mode. The
complete digital controller implementation of fractional-order control has not been studied in the thesis. And this is
also the future work that needs to be focused on developing to bring fractional-order control into applications.

The experimental system in the thesis can only verify the 2x2 system, higher-order systems such as distillation
column processes, due to budget and equipment limitations, have not been implemented in the thesis. This is
important applied research to bring control theories into practical applications, and also bringing great economic
benefits.
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